Araştırma Makalesi
BibTex RIS Kaynak Göster

Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği

Yıl 2023, Cilt: 2 Sayı: 1, 24 - 30, 30.06.2023

Öz

Küresel güneş radyasyonunun doğru tahmini, güneş enerjisi dönüşüm sistemleri (modelleme, tasarım ve işletme) ve gelecekteki yatırım politikaları için kritik bir öneme sahiptir. Bu çalışmada uzun-kısa süreli bellek (LSTM) yöntemi kullanılarak günlük ortalama aylık güneş ışınımı tahmini yapılmıştır. Bunun için Türkiye’nin İç Anadolu Bölgesinde bulunan Sivas İlinden elde edilen aylık güneş ışınımı verileri kullanılmıştır. Tahmin doğruluğunun değerlendirmesi için ortalama mutlak yüzde hata (MAPE), kök ortalama kare hatası (RMSE) ve korelasyon katsayısı (R) testleri kullanılmıştır. Sonuçlar LSTM modelinin çalışma alanı için güneş ışınımını % 9.446 MAPE, 0.496 kWh/m2day RMSE ve 0.976 R değerleri ile etkin bir şekilde tahmin ettiğini göstermektedir.

Teşekkür

Verilerini sağlayan Meteoroloji Genel Müdürlüğü’ne teşekkür ederiz.

Kaynakça

  • Akinoğlu, B. G. & Ecevit, A. (1990). Construction of a Quadratic Model Using Modified Angstrom Coefficients to Estimate Global Solar Radiation. Solar Energy, 45 (2), 85–92. https://doi.org/10.1016/0038-092X(90)90032-8
  • Arslan, G., Bayhan, B. & Yaman, K. (2019). Mersin / Türkiye için Ölçülen Global Güneş Işınımının Yapay Sinir Ağları ile Tahmin Edilmesi ve Yaygın Işınım Modelleri ile Karşılaştırılması. Gazi University Journal of Science Part C: Design and Technology, 7 (1), 80-96. https://doi.org/10.29109/gujsc.419473
  • Bakirci, K. (2009). Correlations for Estimation of Daily Global Solar Radiation with Hours of Bright Sunshine in Turkey. Energy, 34 (4), 485–501. https://doi.org/10.1016/j.energy.2009.02.005
  • Ballı, Ö. (2021). Estimating Global Solar Radiation from Empirical Models: An Application. European Mechanical Science, 5 (3), 135-147. https://doi.org/10.26701/ems.797177
  • Bilgili, M. & Ozgoren, M. (2011). Daily Total Global Solar Radiation Modeling from Several Meteorological Data. Meteorology and Atmospheric Physics, 112, 125-138. https://doi.org/10.1007/s00703-011-0137-9
  • Bilgili, M., Arslan, N., Şekertekin, A, & Yaşar, A. (2022). Application of Long Short-Term Memory (LSTM) Neural Network Based on Deeplearning for Electricity Energy Consumption Forecasting. Turkish Journal of Electrical Engineering and Computer Sciences, 30 (1), 140-157. https://doi.org/10.3906/elk-2011-14
  • BP. (2022). Statistical Review of World Energy.
  • Celik, A. N. & Muneer, T. (2013). Neural Network Based Method for Conversion of Solar Radiation Data. Energy Conversion and Management, 67, 117–124. https://doi.org/10.1016/j.enconman.2012.11.010
  • Gers, F. A., Schmidhuber, J. & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12 (10), 2451-2471. https://doi.org/10.1162/089976600300015015
  • Gurlek, C. & Sahin, M. (2018). Estimation of the Global Solar Radiation with the Artificial Neural Networks for the City of Sivas. European Mechanical Science, 2 (2), 46-51. https://doi.org/10.26701/ems.359681
  • Gül, M. & Çelik, E. (2017). ANFIS Kullanılarak Tunceli İli için Global Güneş Radyasyonu Tahmini. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 8 (4), 891-899.
  • Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Koca, A., Oztop, H. F., Varol, Y. & Koca, G. O. (2011). Estimation of Solar Radiation Using Artificial Neural Networks with Different Input Parameters for Mediterranean Region of Anatolia in Turkey. Expert Systems with Applications, 38 (7), 8756–8762. https://doi.org/10.1016/j.eswa.2011.01.085
  • Ozgoren, M., Bilgili, M. & Sahin, B. (2012). Estimation of Global Solar Radiation using ANN over Turkey. Expert Systems with Applications, 39 (5), 5043-5051. https://doi.org/10.1016/j.eswa.2011.11.036
  • Rao, K. D. V. S. K., Premalatha, M. & Naveen, C. (2018). Analysis of Different Combinations of Meteorological Parameters in Predicting the Horizontal Global Solar Radiation with ANN Approach: A Case Study. Renewable and Sustainable Energy Reviews, 91, 248–58. https://doi.org/10.1016/j.rser.2018.03.096
  • Sahin, M., Kaya, Y. & Uyar, M. (2013). Comparison of ANN and MLR Models for Estimating Solar Radiation in Turkey using NOAA/AVHRR Data. Advances in Space Research, 51 (5), 891-904. https://doi.org/10.1016/j.asr.2012.10.010
  • Sen, Z., Oztopal, A. & Sahin, A. D. (2004). Solar Irradiation Estimation from Sunshine Duration by Geno-Fuzzy Partial Approach. Energy Sources, 26, 377–386. https://doi.org/10.1080/00908310490266814
  • Sözen, A., Arcaklioğlu, E. & Özalp, M. (2004). Estimation of Solar Potential in Turkey by Artificial Neural Networks Using Meteorological and Geographical Data. Energy Conversion and Management, 45 (18-19), 3033–3052. https://doi.org/10.1016/j.enconman.2003.12.020
  • Sözen, A. & Arcaklioğlu, E. (2005). Solar Potential in Turkey. Applied Energy, 80 (1), 35–45. https://doi.org/10.1016/j.apenergy.2004.02.003
  • Şenkal, O. & Kuleli, T. (2009). Estimation of Solar Radiation Over Turkey Using Artificial Neural Network and Satellite Data. Applied Energy, 86 (7-8), 1222–1228. https://doi.org/10.1016/j.apenergy.2008.06.003
  • Şenkal, O. (2010). Modeling of Solar Radiation Using Remote Sensing and Artificial Neural Network in Turkey. Energy, 35 (12), 4795–4801. https://doi.org/10.1016/j.energy.2010.09.009
  • Taylor, K. E. (2001). Summarizing Multiple Aspects of Model Performance in a Single Diagram, Journal of Geophysical Research Atmospheres, 106 (D7), 7183-7192. https://doi.org/10.1029/2000JD900719
  • Yildiz, B. Y., Şahin, M., Şenkal, O., Pestemalci, V. & Emrahoğlu, N. (2013). A Comparison of two Solar Radiation Models Using Artificial Neural Networks and Remote Sensing in Turkey. Energy Sources, Part A, 35 (3), 209–217. https://doi.org/10.1080/15567036.2011.650276
  • Yu, J., Ding, F., Guo, C. & Wang, Y. (2019). System Load Trend Prediction Method Based on IF-EMD-LSTM. International Journal of Distributed Sensor Networks, 15 (8). https://doi.org/10.1177/1550147719867655
  • Zhang, J., Zhao, L., Deng, S., Xu, W. & Zhang, Y. (2017). A Critical Review of the Models Used to Estimate Solar Radiation. Renewable and Sustainable Energy Reviews, 70, 314–329. http://dx.doi.org/10.1016/j.rser.2016.11.124

Estimation of Monthly Global Solar Radiation Using Long-Short Term Memory (LSTM) Method: A Case Study of Sivas Province

Yıl 2023, Cilt: 2 Sayı: 1, 24 - 30, 30.06.2023

Öz

Accurate estimation of global solar radiation is critical for solar energy conversion systems (modelling, design and operation) and future investment policies. In this study, daily average monthly solar radiation estimation were performed using the long-short term memory (LSTM) method. For this aim, monthly sunshine radiation data obtained from the Sivas Province in the Central Anatolia Region of Turkey was used. Mean absolute percent error (MAPE), root mean square error (RMSE) and correlation coefficient (R) tests were used for forecast accuracy assessment. The results showed that the LTSM model predicted solar radiation effectively with MAPE of 9.446%, RMSE of 0.496 kWh/m2day, and R of 0.976 for the study area.

Kaynakça

  • Akinoğlu, B. G. & Ecevit, A. (1990). Construction of a Quadratic Model Using Modified Angstrom Coefficients to Estimate Global Solar Radiation. Solar Energy, 45 (2), 85–92. https://doi.org/10.1016/0038-092X(90)90032-8
  • Arslan, G., Bayhan, B. & Yaman, K. (2019). Mersin / Türkiye için Ölçülen Global Güneş Işınımının Yapay Sinir Ağları ile Tahmin Edilmesi ve Yaygın Işınım Modelleri ile Karşılaştırılması. Gazi University Journal of Science Part C: Design and Technology, 7 (1), 80-96. https://doi.org/10.29109/gujsc.419473
  • Bakirci, K. (2009). Correlations for Estimation of Daily Global Solar Radiation with Hours of Bright Sunshine in Turkey. Energy, 34 (4), 485–501. https://doi.org/10.1016/j.energy.2009.02.005
  • Ballı, Ö. (2021). Estimating Global Solar Radiation from Empirical Models: An Application. European Mechanical Science, 5 (3), 135-147. https://doi.org/10.26701/ems.797177
  • Bilgili, M. & Ozgoren, M. (2011). Daily Total Global Solar Radiation Modeling from Several Meteorological Data. Meteorology and Atmospheric Physics, 112, 125-138. https://doi.org/10.1007/s00703-011-0137-9
  • Bilgili, M., Arslan, N., Şekertekin, A, & Yaşar, A. (2022). Application of Long Short-Term Memory (LSTM) Neural Network Based on Deeplearning for Electricity Energy Consumption Forecasting. Turkish Journal of Electrical Engineering and Computer Sciences, 30 (1), 140-157. https://doi.org/10.3906/elk-2011-14
  • BP. (2022). Statistical Review of World Energy.
  • Celik, A. N. & Muneer, T. (2013). Neural Network Based Method for Conversion of Solar Radiation Data. Energy Conversion and Management, 67, 117–124. https://doi.org/10.1016/j.enconman.2012.11.010
  • Gers, F. A., Schmidhuber, J. & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12 (10), 2451-2471. https://doi.org/10.1162/089976600300015015
  • Gurlek, C. & Sahin, M. (2018). Estimation of the Global Solar Radiation with the Artificial Neural Networks for the City of Sivas. European Mechanical Science, 2 (2), 46-51. https://doi.org/10.26701/ems.359681
  • Gül, M. & Çelik, E. (2017). ANFIS Kullanılarak Tunceli İli için Global Güneş Radyasyonu Tahmini. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 8 (4), 891-899.
  • Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Koca, A., Oztop, H. F., Varol, Y. & Koca, G. O. (2011). Estimation of Solar Radiation Using Artificial Neural Networks with Different Input Parameters for Mediterranean Region of Anatolia in Turkey. Expert Systems with Applications, 38 (7), 8756–8762. https://doi.org/10.1016/j.eswa.2011.01.085
  • Ozgoren, M., Bilgili, M. & Sahin, B. (2012). Estimation of Global Solar Radiation using ANN over Turkey. Expert Systems with Applications, 39 (5), 5043-5051. https://doi.org/10.1016/j.eswa.2011.11.036
  • Rao, K. D. V. S. K., Premalatha, M. & Naveen, C. (2018). Analysis of Different Combinations of Meteorological Parameters in Predicting the Horizontal Global Solar Radiation with ANN Approach: A Case Study. Renewable and Sustainable Energy Reviews, 91, 248–58. https://doi.org/10.1016/j.rser.2018.03.096
  • Sahin, M., Kaya, Y. & Uyar, M. (2013). Comparison of ANN and MLR Models for Estimating Solar Radiation in Turkey using NOAA/AVHRR Data. Advances in Space Research, 51 (5), 891-904. https://doi.org/10.1016/j.asr.2012.10.010
  • Sen, Z., Oztopal, A. & Sahin, A. D. (2004). Solar Irradiation Estimation from Sunshine Duration by Geno-Fuzzy Partial Approach. Energy Sources, 26, 377–386. https://doi.org/10.1080/00908310490266814
  • Sözen, A., Arcaklioğlu, E. & Özalp, M. (2004). Estimation of Solar Potential in Turkey by Artificial Neural Networks Using Meteorological and Geographical Data. Energy Conversion and Management, 45 (18-19), 3033–3052. https://doi.org/10.1016/j.enconman.2003.12.020
  • Sözen, A. & Arcaklioğlu, E. (2005). Solar Potential in Turkey. Applied Energy, 80 (1), 35–45. https://doi.org/10.1016/j.apenergy.2004.02.003
  • Şenkal, O. & Kuleli, T. (2009). Estimation of Solar Radiation Over Turkey Using Artificial Neural Network and Satellite Data. Applied Energy, 86 (7-8), 1222–1228. https://doi.org/10.1016/j.apenergy.2008.06.003
  • Şenkal, O. (2010). Modeling of Solar Radiation Using Remote Sensing and Artificial Neural Network in Turkey. Energy, 35 (12), 4795–4801. https://doi.org/10.1016/j.energy.2010.09.009
  • Taylor, K. E. (2001). Summarizing Multiple Aspects of Model Performance in a Single Diagram, Journal of Geophysical Research Atmospheres, 106 (D7), 7183-7192. https://doi.org/10.1029/2000JD900719
  • Yildiz, B. Y., Şahin, M., Şenkal, O., Pestemalci, V. & Emrahoğlu, N. (2013). A Comparison of two Solar Radiation Models Using Artificial Neural Networks and Remote Sensing in Turkey. Energy Sources, Part A, 35 (3), 209–217. https://doi.org/10.1080/15567036.2011.650276
  • Yu, J., Ding, F., Guo, C. & Wang, Y. (2019). System Load Trend Prediction Method Based on IF-EMD-LSTM. International Journal of Distributed Sensor Networks, 15 (8). https://doi.org/10.1177/1550147719867655
  • Zhang, J., Zhao, L., Deng, S., Xu, W. & Zhang, Y. (2017). A Critical Review of the Models Used to Estimate Solar Radiation. Renewable and Sustainable Energy Reviews, 70, 314–329. http://dx.doi.org/10.1016/j.rser.2016.11.124
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Cahit Gürlek 0000-0002-0273-2999

Mehmet Bilgili 0000-0002-5339-6120

Erken Görünüm Tarihi 16 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 1

Kaynak Göster

APA Gürlek, C., & Bilgili, M. (2023). Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 2(1), 24-30.
AMA Gürlek C, Bilgili M. Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği. CUJAST. Haziran 2023;2(1):24-30.
Chicago Gürlek, Cahit, ve Mehmet Bilgili. “Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 2, sy. 1 (Haziran 2023): 24-30.
EndNote Gürlek C, Bilgili M (01 Haziran 2023) Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 2 1 24–30.
IEEE C. Gürlek ve M. Bilgili, “Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği”, CUJAST, c. 2, sy. 1, ss. 24–30, 2023.
ISNAD Gürlek, Cahit - Bilgili, Mehmet. “Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 2/1 (Haziran 2023), 24-30.
JAMA Gürlek C, Bilgili M. Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği. CUJAST. 2023;2:24–30.
MLA Gürlek, Cahit ve Mehmet Bilgili. “Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, c. 2, sy. 1, 2023, ss. 24-30.
Vancouver Gürlek C, Bilgili M. Aylık Toplam Güneş Işınımının Uzun-Kısa Süreli Bellek (LSTM) Yöntemiyle Tahmini: Sivas İli Örneği. CUJAST. 2023;2(1):24-30.