Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Skid Resistance Perfromance of Surface Coatings Manufactured with Different Aggregates

Yıl 2017, Cilt: 32 Sayı: 1, 109 - 120, 15.03.2017
https://doi.org/10.21605/cukurovaummfd.310066

Öz

In this study, skid resistance performance of surface coatings, which were produced with different aggregate types including natural aggregates and slags and sizes and gradations were evaluated. Physical, mechanical and chemical properties of each aggregate were determined according to related EN standards. Chip seal samples were prepared with seven different particle size ranging from 2.00 to 19.00 mm, whereas slurry seal samples were manufactured in three different gradations, which are specified in ASTM D 3910. To identify the skid resistances and macro-textures of each surface coating samples, ASTM E 303 and ASTM E 965 were followed. The results showed that skid resistance performance of the samples manufactured with slags higher that those produce with natural aggregates.

Kaynakça

  • 1. Rezaei, A., Masad, E., Chowdhury, A., 2011. Development of a Model for Asphalt Pavement Skid Resistance Based on Aggregate Characteristics and Gradation, Journal of Transportation Engineering, vol. 137, pp. 863-873.
  • 2. Mayora, J. M. P., Piña, R. J., 2009. An Assessment of the Skid Resistance Effect on Traffic Safety Under Wet-Pavement Conditions, Accident Analysis & Prevention, vol. 41, pp. 881-886.
  • 3. Do, M.T., Cerezo V., 2015. Road Surface Texture and Skid Resistance, Surface Topography: Metrology and Properties, vol. 3, p. 16,
  • 4. Asi, I. M., Qasrawi, H. Y., Shalabi, F. I., 2007. Use of Steel Slag Aggregate in Asphalt Concrete Mixes, Canadian Journal of Civil Engineering, vol. 34, pp. 902-911,
  • 5. Kogbara, R. B., Masad, E. A. E., Kassem, Scarpas, A. T., Anupam, K., 2016. A State-of-the-art Review of Parameters Influencing Measurement and Modeling of Skid Resistance of Asphalt Pavements, Construction and Building Materials, vol. 114, pp. 602-617,
  • 6. Fwa, T., Choo, Y., Liu, Y. 2003. Effect of Aggregate Spacing on Skid Resistance of Asphalt Pavement, Journal of Transportation Engineering, vol. 129, pp. 420-426,
  • 7. Artamendi, I., Phillips, P., Allen, B., Woodward, D. 2013. Development of UK Propietary Asphalt Surfacing Skid Resistance and Texture, in Airfield and Highway Pavement Sustainable and Efficient Pavements, pp. 865-874.
  • 8. Sandberg, U., 1987. Road Traffic Noise - The Influence of the Road Surface and its Characterization, Applied Aqustics, vol. 21, pp. 97-118,
  • 9. Andriejauskasa, T., Vorobjovasa, V., Mielonasb, V., 2014. Evaluation of Skid Resistance Characteristics and Measurement Methods, Proceedings of the International Conference on Environmental Engineering. ICEE, Vol. 9, p. 1.
  • 10. ASTM, ASTM E 303 Standard Test Method for Measuring Surface Frictional Properties using the British Pendulum Tester, ed, 2012.
  • 11. Martino, M. M., Weissmann, J., 2008. Evaluation of Seal Coat Performance Using Macro-texture Measurements, Texas Department of Transportation, Technical Report (9/05 — 8/07) FHWA/TX-08/0-5310-3
  • 12. Saykin, V. V., Zhang, Y., Cao, Y., Wang, M. L., McDaniel, J. G., 2012. Pavement Macrotexture Monitoring Through Sound Generated by a Tire-Pavement Interaction, Journal of Engineering Mechanics, vol. 139, pp. 264-271.
  • 13. Sengoz, B., Topal, A., Tanyel, S., 2012. Comparison of Pavement Surface Texture Determination by Sand Patch Test and 3D Laser Scanning, Periodica Polytechnica. Civil Engineering, vol. 56, p. 73.
  • 14. ASTM, ASTM E 965-12, Standard Test Method for Measuring Pavement Macrotexture Depth using a Volumetric Technique, ed, 2012.
  • 15. Adams, J. M., Richard Kim, Y., 2014. Mean Profile Depth Analysis of Field and Laboratory Traffic-Loaded Chip Seal Surface Treatments, International Journal of Pavement Engineering, vol. 15, pp. 645-656.
  • 16. Praticò, F. G., Vaiana, R., Iuele, T., 2015. Macrotexture Modeling and Experimental Validation for Pavement Surface Treatments, Construction and Building Materials, vol. 95, pp. 658-666.
  • 17. ASTM, ASTM D3910 – 11 Standard Practices for Design, Testing, and Construction of Slurry Seal, ed, 2012, p. 8.
  • 18. ASIRT. (2016, 13.04.2016). Annual Global Road Crash Statistics.
  • 19. Carrillo, M. C., Flores Anaya, M. R., Lopez, V., 2000. Risk Factors in Highway Traffic Accidents: A Case Control Study, Accident Analysis & Prevention, vol. 32, pp. 703-709.
  • 20. Andreescu, M.-P., Frost, D. B. 1998. Weather and Traffic Accidents in Montreal, Canada, Climate Research, vol. 9, pp. 225-230.
  • 21. Hayakawa, H., Fischbeck P. S., Fischhoff, B. 2000. Traffic Accident Statistics and Risk Perceptions in Japan and the United States, Accident Analysis & Prevention, vol. 32, pp. 827-835.
  • 22. Lindenmann, H., 2006. New Findings Regarding the Significance of Pavement Skid Resistance for Road Safety on Swiss Freeways, Journal of safety research, vol. 37, pp. 395-400.
  • 23. Andriejauskasa, T., Vorobjovasa, V., Mielonasb, V., 2014, Evaluation of Skid Resistance Characteristics and Measurement Methods, in 9th International Conference on Environmental Engineering, Vilnius, Lithuania, p. 8.
  • 24. Ahammed, M., Tighe, S., 2009. Early-Life, Long-Term, and Seasonal Variations in Skid Resistance in Flexible and Rigid Pavements, Transportation Research Record: Journal of the Transportation Research Board, pp. 112-120.
  • 25. Huang, C., 2010. Texture Characteristics of Unpolished and Polished Aggregate Surfaces, Tribology International, vol. 43, pp. 188-196.
  • 26. Mahboob Kanafi, M., Kuosmanen, A., Pellinen, T. K., Tuononen, A. J., 2015. Macro-and Micro-Texture Evolution of Road Pavements and Correlation with Friction, International Journal of Pavement Engineering, vol. 16, pp. 168-179.
  • 27. Bitelli, G., Simone, A., Girardi, F., Lantieri, C. 2012. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture, Sensors, vol. 12, p. 9110.
  • 28. Loprencipe G., Cantisani, G., 2013. Unified Analysis of Road Pavement Profiles for Evaluation of Surface Characteristics, Modern Applied Science, vol. 7, p. 1.
  • 29. Kumar, P., 2014. Laboratory Base Pavement Surface Analysis Based on Materials, International Journal of Emerging Trends in Science and Technology, 1(07).
  • 30. Bazlamit, S. M., Reza, F., 2005. Changes in Asphalt Pavement Friction Components and Adjustment of Skid Number for Temperature, Journal of Transportation Engineering, vol. 1
  • 31, pp. 470-476.31. Fwa, T., Ong, G.P., 2008. Wet-pavement Hydroplaning Risk and Skid Resistance: Analysis, Journal of Transportation Engineering, vol. 134, pp. 182-190.
  • 32. Gökalp, İ., Uz, V.E., Saltan, M., 2016. Testing the Abrasion Resistance of Aggregates Including By-products by using Micro Deval Apparatus with Different Standard Test Methods, Construction and Building Materials, vol. 123, pp. 1-7.
  • 33. Uz, V.E., Gökalp, İ., Epsileli, S.E., Tepe, M., 2014. Karayollari Teknik Şartnamesinde (KTŞ) Yer Alan Pürüzlendirme Uygulaması ve Bu Uygulamada Endüstriyel Atıkların Kullanılabilirliği, Karayolları 3 Ulusal Kongresi, Ankara, Turkey.
  • 34. Reuter, M., Xiao, Y., Boin, U., 2004. Recycling and Environmental Issues of Metallurgical Slags and Salt Fluxes, VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, pp. 349-356.
  • 35. Krugler, P.E., Freeman, T.J., Wirth, J.E., Wikander, J.P., Estakhri, C.K., Wimsatt, A.J. 2012. Performance Comparison of Various Seal Coat Grades Used in Texas, Citeseer.
  • 36. Karasahin, M., Aktas, B., Gurer, C., 2011. Determining Precoated Aggregate Performance on Chip Seals Using Vialit Test, Transportation Research Board 90th Annual Meeting.
  • 37. Gransberg D.D., James, D.M., 2005. Chip Seal Best Practices Vol. 342: Transportation Research Board.
  • 38. Roberts C., Nicholls, J.C., 2008. Desing Guied for Road Surface Dressing: IHS.

Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi

Yıl 2017, Cilt: 32 Sayı: 1, 109 - 120, 15.03.2017
https://doi.org/10.21605/cukurovaummfd.310066

Öz

Bu çalışmada, doğal agregalardan ve cüruflardan oluşan farklı agrega tür ve tane boyutlarında ve gradasyonunda üretilen yüzeysel kaplamaların kayma direnci performansı araştırılmıştır. Bu amaç doğrultusunda, öncelikle her bir agreganın fiziksel, mekanik ve kimyasal özelikleri TS EN standartlarına göre belirlenmiştir. Sathi kaplama örnekleri; 2-19 mm aralığında değişen yedi farklı tane boyutunda hazırlanırken, harç tipi kaplama örnekleri ise üç farklı gradasyonda üretilmiştir. Üretilen yüzeysel kaplama numunelerinin, kayma dirençleri ve makro dokuları sırasıyla ASTM E 303 ve ASTM E 965 standartları göre belirlenmiştir. Yüzeysel kaplamaların kayma direnci karşılaştırıldığında, her boyut ve gradasyonda cüruflar ile üretilmiş olan numunelerin, doğal agrega ile üretilmiş olan numunelerden daha iyi performans gösterdiği gözlenmiştir.

Kaynakça

  • 1. Rezaei, A., Masad, E., Chowdhury, A., 2011. Development of a Model for Asphalt Pavement Skid Resistance Based on Aggregate Characteristics and Gradation, Journal of Transportation Engineering, vol. 137, pp. 863-873.
  • 2. Mayora, J. M. P., Piña, R. J., 2009. An Assessment of the Skid Resistance Effect on Traffic Safety Under Wet-Pavement Conditions, Accident Analysis & Prevention, vol. 41, pp. 881-886.
  • 3. Do, M.T., Cerezo V., 2015. Road Surface Texture and Skid Resistance, Surface Topography: Metrology and Properties, vol. 3, p. 16,
  • 4. Asi, I. M., Qasrawi, H. Y., Shalabi, F. I., 2007. Use of Steel Slag Aggregate in Asphalt Concrete Mixes, Canadian Journal of Civil Engineering, vol. 34, pp. 902-911,
  • 5. Kogbara, R. B., Masad, E. A. E., Kassem, Scarpas, A. T., Anupam, K., 2016. A State-of-the-art Review of Parameters Influencing Measurement and Modeling of Skid Resistance of Asphalt Pavements, Construction and Building Materials, vol. 114, pp. 602-617,
  • 6. Fwa, T., Choo, Y., Liu, Y. 2003. Effect of Aggregate Spacing on Skid Resistance of Asphalt Pavement, Journal of Transportation Engineering, vol. 129, pp. 420-426,
  • 7. Artamendi, I., Phillips, P., Allen, B., Woodward, D. 2013. Development of UK Propietary Asphalt Surfacing Skid Resistance and Texture, in Airfield and Highway Pavement Sustainable and Efficient Pavements, pp. 865-874.
  • 8. Sandberg, U., 1987. Road Traffic Noise - The Influence of the Road Surface and its Characterization, Applied Aqustics, vol. 21, pp. 97-118,
  • 9. Andriejauskasa, T., Vorobjovasa, V., Mielonasb, V., 2014. Evaluation of Skid Resistance Characteristics and Measurement Methods, Proceedings of the International Conference on Environmental Engineering. ICEE, Vol. 9, p. 1.
  • 10. ASTM, ASTM E 303 Standard Test Method for Measuring Surface Frictional Properties using the British Pendulum Tester, ed, 2012.
  • 11. Martino, M. M., Weissmann, J., 2008. Evaluation of Seal Coat Performance Using Macro-texture Measurements, Texas Department of Transportation, Technical Report (9/05 — 8/07) FHWA/TX-08/0-5310-3
  • 12. Saykin, V. V., Zhang, Y., Cao, Y., Wang, M. L., McDaniel, J. G., 2012. Pavement Macrotexture Monitoring Through Sound Generated by a Tire-Pavement Interaction, Journal of Engineering Mechanics, vol. 139, pp. 264-271.
  • 13. Sengoz, B., Topal, A., Tanyel, S., 2012. Comparison of Pavement Surface Texture Determination by Sand Patch Test and 3D Laser Scanning, Periodica Polytechnica. Civil Engineering, vol. 56, p. 73.
  • 14. ASTM, ASTM E 965-12, Standard Test Method for Measuring Pavement Macrotexture Depth using a Volumetric Technique, ed, 2012.
  • 15. Adams, J. M., Richard Kim, Y., 2014. Mean Profile Depth Analysis of Field and Laboratory Traffic-Loaded Chip Seal Surface Treatments, International Journal of Pavement Engineering, vol. 15, pp. 645-656.
  • 16. Praticò, F. G., Vaiana, R., Iuele, T., 2015. Macrotexture Modeling and Experimental Validation for Pavement Surface Treatments, Construction and Building Materials, vol. 95, pp. 658-666.
  • 17. ASTM, ASTM D3910 – 11 Standard Practices for Design, Testing, and Construction of Slurry Seal, ed, 2012, p. 8.
  • 18. ASIRT. (2016, 13.04.2016). Annual Global Road Crash Statistics.
  • 19. Carrillo, M. C., Flores Anaya, M. R., Lopez, V., 2000. Risk Factors in Highway Traffic Accidents: A Case Control Study, Accident Analysis & Prevention, vol. 32, pp. 703-709.
  • 20. Andreescu, M.-P., Frost, D. B. 1998. Weather and Traffic Accidents in Montreal, Canada, Climate Research, vol. 9, pp. 225-230.
  • 21. Hayakawa, H., Fischbeck P. S., Fischhoff, B. 2000. Traffic Accident Statistics and Risk Perceptions in Japan and the United States, Accident Analysis & Prevention, vol. 32, pp. 827-835.
  • 22. Lindenmann, H., 2006. New Findings Regarding the Significance of Pavement Skid Resistance for Road Safety on Swiss Freeways, Journal of safety research, vol. 37, pp. 395-400.
  • 23. Andriejauskasa, T., Vorobjovasa, V., Mielonasb, V., 2014, Evaluation of Skid Resistance Characteristics and Measurement Methods, in 9th International Conference on Environmental Engineering, Vilnius, Lithuania, p. 8.
  • 24. Ahammed, M., Tighe, S., 2009. Early-Life, Long-Term, and Seasonal Variations in Skid Resistance in Flexible and Rigid Pavements, Transportation Research Record: Journal of the Transportation Research Board, pp. 112-120.
  • 25. Huang, C., 2010. Texture Characteristics of Unpolished and Polished Aggregate Surfaces, Tribology International, vol. 43, pp. 188-196.
  • 26. Mahboob Kanafi, M., Kuosmanen, A., Pellinen, T. K., Tuononen, A. J., 2015. Macro-and Micro-Texture Evolution of Road Pavements and Correlation with Friction, International Journal of Pavement Engineering, vol. 16, pp. 168-179.
  • 27. Bitelli, G., Simone, A., Girardi, F., Lantieri, C. 2012. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture, Sensors, vol. 12, p. 9110.
  • 28. Loprencipe G., Cantisani, G., 2013. Unified Analysis of Road Pavement Profiles for Evaluation of Surface Characteristics, Modern Applied Science, vol. 7, p. 1.
  • 29. Kumar, P., 2014. Laboratory Base Pavement Surface Analysis Based on Materials, International Journal of Emerging Trends in Science and Technology, 1(07).
  • 30. Bazlamit, S. M., Reza, F., 2005. Changes in Asphalt Pavement Friction Components and Adjustment of Skid Number for Temperature, Journal of Transportation Engineering, vol. 1
  • 31, pp. 470-476.31. Fwa, T., Ong, G.P., 2008. Wet-pavement Hydroplaning Risk and Skid Resistance: Analysis, Journal of Transportation Engineering, vol. 134, pp. 182-190.
  • 32. Gökalp, İ., Uz, V.E., Saltan, M., 2016. Testing the Abrasion Resistance of Aggregates Including By-products by using Micro Deval Apparatus with Different Standard Test Methods, Construction and Building Materials, vol. 123, pp. 1-7.
  • 33. Uz, V.E., Gökalp, İ., Epsileli, S.E., Tepe, M., 2014. Karayollari Teknik Şartnamesinde (KTŞ) Yer Alan Pürüzlendirme Uygulaması ve Bu Uygulamada Endüstriyel Atıkların Kullanılabilirliği, Karayolları 3 Ulusal Kongresi, Ankara, Turkey.
  • 34. Reuter, M., Xiao, Y., Boin, U., 2004. Recycling and Environmental Issues of Metallurgical Slags and Salt Fluxes, VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, pp. 349-356.
  • 35. Krugler, P.E., Freeman, T.J., Wirth, J.E., Wikander, J.P., Estakhri, C.K., Wimsatt, A.J. 2012. Performance Comparison of Various Seal Coat Grades Used in Texas, Citeseer.
  • 36. Karasahin, M., Aktas, B., Gurer, C., 2011. Determining Precoated Aggregate Performance on Chip Seals Using Vialit Test, Transportation Research Board 90th Annual Meeting.
  • 37. Gransberg D.D., James, D.M., 2005. Chip Seal Best Practices Vol. 342: Transportation Research Board.
  • 38. Roberts C., Nicholls, J.C., 2008. Desing Guied for Road Surface Dressing: IHS.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Volkan Emre Uz

İslam Gökalp

Yayımlanma Tarihi 15 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 1

Kaynak Göster

APA Uz, V. E., & Gökalp, İ. (2017). Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 109-120. https://doi.org/10.21605/cukurovaummfd.310066
AMA Uz VE, Gökalp İ. Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi. cukurovaummfd. Mart 2017;32(1):109-120. doi:10.21605/cukurovaummfd.310066
Chicago Uz, Volkan Emre, ve İslam Gökalp. “Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, sy. 1 (Mart 2017): 109-20. https://doi.org/10.21605/cukurovaummfd.310066.
EndNote Uz VE, Gökalp İ (01 Mart 2017) Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 1 109–120.
IEEE V. E. Uz ve İ. Gökalp, “Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi”, cukurovaummfd, c. 32, sy. 1, ss. 109–120, 2017, doi: 10.21605/cukurovaummfd.310066.
ISNAD Uz, Volkan Emre - Gökalp, İslam. “Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/1 (Mart 2017), 109-120. https://doi.org/10.21605/cukurovaummfd.310066.
JAMA Uz VE, Gökalp İ. Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi. cukurovaummfd. 2017;32:109–120.
MLA Uz, Volkan Emre ve İslam Gökalp. “Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 32, sy. 1, 2017, ss. 109-20, doi:10.21605/cukurovaummfd.310066.
Vancouver Uz VE, Gökalp İ. Farklı Tür Agregalarla Üretilen Yüzeysel Kaplamaların Kayma Direnci Performanslarının İncelenmesi. cukurovaummfd. 2017;32(1):109-20.