Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Selected Cross-section Geometry on the Seismic Performance of Concrete Gravity Dams

Yıl 2018, Cilt: 33 Sayı: 3, 81 - 92, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.500577

Öz

In this study, the effect of section geometry on the seismic performance of concrete gravity dams was investigated. For this purpose, six different cross-sectional geometries widely-used at the design phase of concrete gravity dams were selected and the numerical models were adapted to the Gunduzler, Naras and Andiraz dams. Thus, the effect of section geometry on the seismic demands have been examined without changing the variables used during the actual design. Equal amounts of material were used in all of the selected sections. So, it was investigated which section type allowed the most optimal use of the material. Acoustic fluid elements were utilized for simulating the interaction between the reservoir and the dam body. The numerical models were analyzed under the effect of three different earthquake scenarios. According to the analysis results, it was observed that Section K3 produced the most favorable results. 

Kaynakça

  • 1. Binici, B., Aldemir, A., 2014. Analitik Modellerin Beton Ağırlık Baraj Sismik Davranışını Taklit Etmekteki Verimliliğinin İrdelenmesi, 4. Ulusal Baraj Güvenliği Sempozyumu, 9–11 Ekim 2014, Elazığ.
  • 2. Medina F., Dominguez, J., 1989. Boundary Elements for the Analysis of the Seismic Response of Dams Including Dam-Water- Foundation Interaction Effects, Engineering Analysis with Boundary Elements 6(3), 152-157.
  • 3. Chopra, A.K., Wang, J., 2008. Analysis and Response of Concrete Arch Dams including Dam-Water-Foundation Rock Interaction to Spatially-Varying Ground Motions, Rapor No. UCB/EERC-2008-03, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 4. Westergaard, H.M., 1933. Water Pressures on Dams during Earthquakes, Transactions of the American Society of Civil Engineers 98, 418–433.
  • 5. Kuo, J.S., 1982. Fluid Structure Interactions: Added Mass Computations for Incompressible Fluid, Rapor No. UCB/EERC-82/09, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 6. Chopra, A.K., 1970. Earthquake Response of Concrete Gravity Dams, Journal of Engineering Mechanics ASCE, 96(4), 443-454.
  • 7. Dasgupta, G., Chopra, A.K., 1979. Dynamic Stiffness Matrices for Viscoelastic Half Planes, Journal of Engineering Mechanics ASCE 105(5), 729-745.
  • 8. Fenves, G., Chopra, A.K., 1984. EAGD-84: A Computer Program for Earthquake Response Analysis of Concrete Gravity Dams, Rapor No: UCB/EERC-734, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 9. Fok, K.L., Hall, J.F., Chopra, A.K., 1986. EACD 3D:A Computer Program for Three- Dimensional Earthquake Analysis of Concrete Dams, Rapor No. UCB/EERC-86/09, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 10. Tan, H., Chopra, A.K., 1995. Earthquake Analysis and Response of Concrete Arch Dams, Rapor No. UCB/EERC-95/07, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 11. Chopra, A.K., Wang, J., 2008. Analysis and Response of Concrete Arch Dams Including Dam-water-foundation Rock Interaction to Spatially-varying Ground Motions, Rapor No. UCB/EERC-2008-03, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 12. Fenves, G., Chopra, A.K., 1985. Simplified Earthquake Analysis of Concrete Gravity Dams: Seperate Hydrodynamic and Foundation Interaction Effects, Journal of Engineering Mechanics ASCE 111(6), 715-735.
  • 13. Fenves, G., Chopra, A.K., 1985. Simplified Earthquake Analysis of Concrete Gravity Dams: Combined Hydrodynamic and Foundation Interaction Effects, Journal of Engineering Mechanics ASCE, 111(6), 736-756.
  • 14. Fenves, G., Chopra, A.K., 1987. Simplified Earthquake Analysis of Concrete Gravity Dams, Journal of Structural Engineering ASCE 113(8), 1688-1708.
  • 15. Bouaanani, N., Perrault, C., 2010. Practical Formulas for Frequency Domain Analysis of Earthquake-Induced Dam-Reservoir Interaction, Journal of Engineering Mechanics ASCE 136(1), 107-119.
  • 16. Bhattacharjee S.S., Leger P., 1993. Application of NLFM Models to Predict Cracking in Concrete Gravity Dams, Journal of Structural Engineering ASCE 120(4), 1255-1271.
  • 17. Calayir, Y., Karaton, M., 2005. A Continuum Damage Concrete Model for Earthquake Analysis of Concrete Gravity Dam-Reservoir Systems, Soil Dynamics and Earthquake Engineering 25(11), 857-869.
  • 18. United States Army Corps of Engineering (USACE), 2003. Time History Dynamic Analysis of Concrete Hydraulic Structures, Rapor No: EM 1110-2-6051, Washington, DC.
  • 19.Ulusal Barajlar Kongresi (UBK), 2012. Beton Barajlar Tasarım İlkeleri Rehberi, Devlet Su İşleri Genel Müdürlüğü, 81.
  • 20. ANSYS Inc., 2016. Basic Analysis Guide for ANSYS 17.1. SAS IP Inc.
  • 21. Gauron, O., Boivin, Y., Ambroise, S., Sanda, A.S., Bernier, C., Paultre, P., Proulx, J., Roberge, M. and Roth, S.N., 2018. Forced- Vibration Tests and Numerical Modelling of the Daniel Johnson Multiple-Arch Dam, Journal of Performance of Constructed Facilities 32(2).
  • 22. Sevim, B., Altunisik, A.C., Bayraktar, A., Akköse, M., and Calayir, Y., 2011. Water Length and Height Effects on the Earthquake Behavior of Arch Dam-Reservoir-Foundation Systems, KSCE Journal of Civil Engineering 15(2), 295-303.

Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi

Yıl 2018, Cilt: 33 Sayı: 3, 81 - 92, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.500577

Öz

Bu çalışmada, kesit geometrilerinin beton ağırlık barajların sismik performanslarına etkisi incelenmiştir. Bu amaçla, beton ağırlık barajların tasarımı aşamasında kullanılagelen altı farklı kesit geometrisi seçilmiş ve oluşturulan numerik modeller üç farklı yüksekliğe sahip Gündüzler, Naras ve Andıraz barajlarına uyarlanmıştır. Böylece tasarım aşamasında kullanılan değişkenleri değiştirmeksizin, kesit geometrilerinin barajların sismik taleplerine etkisi incelenmiştir. Seçilen kesitlerin tamamında eşit miktarda malzeme kullanılmıştır. Böylelikle hangi kesit tipinin malzemeyi en optimum şekilde kullanmaya izin verdiği araştırılmıştır. Numerik modellerde rezervuar etkileşimi için akustik akışkan elemanlar kullanılmıştır. Modeller üç adet deprem senaryosuna tabi tutulmuştur. Yapılan analiz sonuçlarına göre Kesit K3’ün en elverişli sonuçları ürettiği gözlemlenmiştir. 

Kaynakça

  • 1. Binici, B., Aldemir, A., 2014. Analitik Modellerin Beton Ağırlık Baraj Sismik Davranışını Taklit Etmekteki Verimliliğinin İrdelenmesi, 4. Ulusal Baraj Güvenliği Sempozyumu, 9–11 Ekim 2014, Elazığ.
  • 2. Medina F., Dominguez, J., 1989. Boundary Elements for the Analysis of the Seismic Response of Dams Including Dam-Water- Foundation Interaction Effects, Engineering Analysis with Boundary Elements 6(3), 152-157.
  • 3. Chopra, A.K., Wang, J., 2008. Analysis and Response of Concrete Arch Dams including Dam-Water-Foundation Rock Interaction to Spatially-Varying Ground Motions, Rapor No. UCB/EERC-2008-03, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 4. Westergaard, H.M., 1933. Water Pressures on Dams during Earthquakes, Transactions of the American Society of Civil Engineers 98, 418–433.
  • 5. Kuo, J.S., 1982. Fluid Structure Interactions: Added Mass Computations for Incompressible Fluid, Rapor No. UCB/EERC-82/09, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 6. Chopra, A.K., 1970. Earthquake Response of Concrete Gravity Dams, Journal of Engineering Mechanics ASCE, 96(4), 443-454.
  • 7. Dasgupta, G., Chopra, A.K., 1979. Dynamic Stiffness Matrices for Viscoelastic Half Planes, Journal of Engineering Mechanics ASCE 105(5), 729-745.
  • 8. Fenves, G., Chopra, A.K., 1984. EAGD-84: A Computer Program for Earthquake Response Analysis of Concrete Gravity Dams, Rapor No: UCB/EERC-734, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 9. Fok, K.L., Hall, J.F., Chopra, A.K., 1986. EACD 3D:A Computer Program for Three- Dimensional Earthquake Analysis of Concrete Dams, Rapor No. UCB/EERC-86/09, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 10. Tan, H., Chopra, A.K., 1995. Earthquake Analysis and Response of Concrete Arch Dams, Rapor No. UCB/EERC-95/07, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 11. Chopra, A.K., Wang, J., 2008. Analysis and Response of Concrete Arch Dams Including Dam-water-foundation Rock Interaction to Spatially-varying Ground Motions, Rapor No. UCB/EERC-2008-03, Earthquake Engineering Research Center, University of California, Berkeley, Kaliforniya.
  • 12. Fenves, G., Chopra, A.K., 1985. Simplified Earthquake Analysis of Concrete Gravity Dams: Seperate Hydrodynamic and Foundation Interaction Effects, Journal of Engineering Mechanics ASCE 111(6), 715-735.
  • 13. Fenves, G., Chopra, A.K., 1985. Simplified Earthquake Analysis of Concrete Gravity Dams: Combined Hydrodynamic and Foundation Interaction Effects, Journal of Engineering Mechanics ASCE, 111(6), 736-756.
  • 14. Fenves, G., Chopra, A.K., 1987. Simplified Earthquake Analysis of Concrete Gravity Dams, Journal of Structural Engineering ASCE 113(8), 1688-1708.
  • 15. Bouaanani, N., Perrault, C., 2010. Practical Formulas for Frequency Domain Analysis of Earthquake-Induced Dam-Reservoir Interaction, Journal of Engineering Mechanics ASCE 136(1), 107-119.
  • 16. Bhattacharjee S.S., Leger P., 1993. Application of NLFM Models to Predict Cracking in Concrete Gravity Dams, Journal of Structural Engineering ASCE 120(4), 1255-1271.
  • 17. Calayir, Y., Karaton, M., 2005. A Continuum Damage Concrete Model for Earthquake Analysis of Concrete Gravity Dam-Reservoir Systems, Soil Dynamics and Earthquake Engineering 25(11), 857-869.
  • 18. United States Army Corps of Engineering (USACE), 2003. Time History Dynamic Analysis of Concrete Hydraulic Structures, Rapor No: EM 1110-2-6051, Washington, DC.
  • 19.Ulusal Barajlar Kongresi (UBK), 2012. Beton Barajlar Tasarım İlkeleri Rehberi, Devlet Su İşleri Genel Müdürlüğü, 81.
  • 20. ANSYS Inc., 2016. Basic Analysis Guide for ANSYS 17.1. SAS IP Inc.
  • 21. Gauron, O., Boivin, Y., Ambroise, S., Sanda, A.S., Bernier, C., Paultre, P., Proulx, J., Roberge, M. and Roth, S.N., 2018. Forced- Vibration Tests and Numerical Modelling of the Daniel Johnson Multiple-Arch Dam, Journal of Performance of Constructed Facilities 32(2).
  • 22. Sevim, B., Altunisik, A.C., Bayraktar, A., Akköse, M., and Calayir, Y., 2011. Water Length and Height Effects on the Earthquake Behavior of Arch Dam-Reservoir-Foundation Systems, KSCE Journal of Civil Engineering 15(2), 295-303.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık, Mühendislik
Bölüm Makaleler
Yazarlar

Alper Aldemir

Yayımlanma Tarihi 30 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 3

Kaynak Göster

APA Aldemir, A. (2018). Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(3), 81-92. https://doi.org/10.21605/cukurovaummfd.500577
AMA Aldemir A. Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi. cukurovaummfd. Eylül 2018;33(3):81-92. doi:10.21605/cukurovaummfd.500577
Chicago Aldemir, Alper. “Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, sy. 3 (Eylül 2018): 81-92. https://doi.org/10.21605/cukurovaummfd.500577.
EndNote Aldemir A (01 Eylül 2018) Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 3 81–92.
IEEE A. Aldemir, “Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi”, cukurovaummfd, c. 33, sy. 3, ss. 81–92, 2018, doi: 10.21605/cukurovaummfd.500577.
ISNAD Aldemir, Alper. “Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/3 (Eylül 2018), 81-92. https://doi.org/10.21605/cukurovaummfd.500577.
JAMA Aldemir A. Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi. cukurovaummfd. 2018;33:81–92.
MLA Aldemir, Alper. “Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2018, ss. 81-92, doi:10.21605/cukurovaummfd.500577.
Vancouver Aldemir A. Beton Ağırlık Barajların Sismik Performanslarına Seçilen Kesit Geometrisinin Etkisi. cukurovaummfd. 2018;33(3):81-92.