Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Spontaneous Combustion Tendency of Çan Lignites

Yıl 2020, Cilt: 35 Sayı: 3, 593 - 608, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846292

Öz

In this study, the spontaneous combustion characteristics of coal samples obtained from Çan Lignite Corporation’s (ÇLC) open pit and stockpiles were determined by the crossing point temperature method. Accordingly, it was determined in the experiments that the average heating rates (AHR) of coals ranged from 0.92 to 3.93 °C min–1; ignition or crossing point temperatures (CPT) from 150 to 182 °C and susceptibility index (IFCC) from 5.04 to 33.33 min-1. As a result, the liability of 21 coal samples to spontaneous combustion tendency was determined to be in the “medium-high” risk category.

Kaynakça

  • 1. Carras, J. N., Day, S. J., Saghafi, A., Williams, D.J., 2009. Greenhouse Gas Emissions from Low-Temperature Oxidation and Spontaneous Combustion at Open-Cut Coal Mines in Australia. International Journal of Coal Geology, 78(2), 161-168.
  • 2. Wang, H., Chen, C., 2015. Experimental Study on Greenhouse Gas Emissions Caused By Spontaneous Coal Combustion. Energy and Fuels, 29(8), 5213-5221.
  • 3. Fierro, V., Miranda, J.L., Romero, C., Andrés, J.M., Arriaga, A., Schmal, D., Visser, G.H., 1999. Prevention of Spontaneous Combustion in Coal Stockpiles: Experimental Results in Coal Storage Yard. Fuel Processing Technology, 59(1), 23-24.
  • 4. Arisoy, A., Beamish, B., Çetegen, E., 2006. Modelling Spontaneous Combustion of Coal. Turkish Journal of Engineering and Environmental Sciences, 30, 193-201.
  • 5. Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkleman, R.B., Blake, D.R., McCormack, J.K., Schroeder, P., 2007. The Spontaneous Combustion of Coal and its By- Products in the Witbank and Sasolburg Coalfields of South Africa. International Journal of Coal Geology, 72(2), 124-140.
  • 6. Muduli, L., Jana, P.K., Mishra, D.P., 2018. Wireless Sensor Network Based Fire Monitoring in Underground Coal Mines: A Fuzzy Logic Approach. Process Safety and Environmental Protection, 113, 435-447.
  • 7. Wachowicz, J., 2008. Analysis of Underground Fires in Polish Hard Coal Mines. Journal of China University of Mining and Technology, 18(3), 332-336.
  • 8. Xia, T., Zhou, F., Wang, X., Zhang, Y., Li, Y., Kang, J., Liu, J., 2016. Controlling Factors of Symbiotic Disaster Between Coal Gas and Spontaneous Combustion in Longwall Mining Gobs. Fuel, 182, 886-896.
  • 9. Kong, B., Li, Z., Yang, Y., Liu, Z., Yan, D., 2017. A Review on the Mechanism, Risk Evaluation, and Prevention of Coal Spontaneous Combustion in China. Environmental Science and Pollution Research, 24(30), 23453-23470.
  • 10. Singh, R.V.K., 2013. Spontaneous Heating and Fire in Coal Mines. Procedia Engineering, 62, 78-90.
  • 11. Mohalik, N.K., Lester, E., Lowndes, I.S., Singh, V.K., 2016. Estimation of Greenhouse Gas Emissions from Spontaneous Combustion/Fire of Coal in Opencast Mines Indian Context. Carbon Management, 7(5-6), 317-332.
  • 12. Nimaje, D.S., Tripathy, D.P., 2016. Characterization of Some Indian Coals to Assess Their Liability to Spontaneous Combustion. Fuel, 163, 139-147.
  • 13. Wang, L., Ren, T., Nie, B., Chen, Y., Lv, C., Tang, H., Zhang, J., 2015a. Development of a Spontaneous Combustion Tarps System Based On BP Neural Network. International Journal of Mining Science and Technology, 25(5), 803-810.
  • 14. Liang, Y., Zhang, J., Ren, T., Wang, Z., Song, S., 2018. Application of Ventilation Simulation to Spontaneous Combustion Control in Underground Coal Mine: A Case Study From Bulianta Colliery. International Journal of Mining Science and Technology, 28, 231-242.
  • 15. Onifade, M., Genc, B., 2019. A Review of Spontaneous Combustion Studies-South African Context. International Journal of Mining, Reclamation and Environment, 33(8), 527-547.
  • 16. Taraba, B., Michalec, Z., 2011. Effect of Longwall Face Advance Rate on Spontaneous Heating Process in the Gob Area-CFD Modelling. Fuel, 90(8), 2790-2797.
  • 17. Taraba, B., Michalec, Z., Michalcová, V., Blejchař, T., Bojko, M., Kozubková, M., 2014. CFD Simulations of the Effect of Wind on the Spontaneous Heating of Coal Stockpiles. Fuel, 118, 107-112.
  • 18. De Rosa, M. I., 2004. Analysis of Mine Fires for All USA Underground and Surface Coal Mining Categories:1990-1999. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety And Health (NIOSH), Pittsburgh Research Laboratory Pittsburgh, PA, 35 s.
  • 19. Nugroho, Y.S., McIntosh, A.C., Gibbs, B.M., 1998. Using the Crossing Point Method to Assess the Self-Heating Behavior of Indonesian Coals. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 27(2), 2981-2989.
  • 20. Hogland, W., Bramryd, T., Persson, I., 1996. Physical, Biological and Chemical Effects of Unsorted Fractions of Industrial Solid Waste in Waste Fuel Storage. Waste Management & Research, 14, 197-210.
  • 21. Hogland, W., Marques, M., 2003. Physical, Biological and Chemical Processes During Storage and Spontaneous Combustion of Waste Fuel. Resources, Conservation and Recycling, 40(1), 53-69.
  • 22. Pis, J., de la Puente, G., Fuente, E., Morán, A., Rubiera, F., 1996. A Study of the Self-Heating of Fresh and Oxidized Coals by Differential Thermal Analysis. Thermochimica Acta, 279, 93-101.
  • 23. Zhu, H., Song, Z., Tan, B., Hao, Y., 2013. Numerical Investigation and Theoretical Prediction of Self-Ignition Characteristics of Coarse Coal Stockpiles. Journal of Loss Prevention in the Process Industries, 26(1), 236-244.
  • 24. Qi, X., Wang, D., Zhong, X., Gu, J., Xu, T., 2010. Characteristics of Oxygen Consumption of Coal at Programmed Temperatures. Mining Science and Technology (China), 20(3), 372-377.
  • 25. Carras, J.N., Young, B.C., 1994. Self-Heating of Coal and Related Materials: Models, Application and Test Methods. Progress in Energy and Combustion Science, 20(1), 1-15.
  • 26. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., 2003b. Pathways for Production of CO2 & CO in Low-Temperature Oxidation of Coal. Energy & Fuels, 17(1), 150-158.
  • 27. Gürdal, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H., Song, W., 2015. The Properties of Çan Basin Coals (Çanakkale-Turkey): Spontaneous Combustion and Combustion By-Products. International Journal of Coal Geology, 138, 1-15.
  • 28. Wang, Y., Shi, G., Guo, Z., 2015b. Coupled Multi-Stage Oxidation and Thermodynamic Process in Coal-Bearing Strata Under Spontaneous Combustion Condition. International Symposium on Advances in Computational Heat Transfer, Rutgers University, Piscataway, NJ, USA, 1-12.
  • 29. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., 2003a. Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modelling. Progress in Energy and Combustion Science, 29(6), 487-513.
  • 30. Nelson, M., Chen, X.D., 2007. Survey of Experimental Work on the Self-Heating and Spontaneous Combustion of Coal. Geology of Coal Fires: Case Studies From Around the World: Geological Society of America Reviews in Engineering Geology, XVIII, 31-83.
  • 31. Nalbandian, H., 2010. Propensity of Coal to Self- Heat. International Energy Agency, Clean Coal Centre, 45.
  • 32. Shi, T., Wang, X., Deng, J., Wen, Z., 2005. The Mechanism at the Initial Stage of the Room- Temperature Oxidation of Coal. Combustion and Flame, 140(4), 332-345.
  • 33. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., 2003. Analysis of the Mechanism of the Low- Temperature Oxidation of Coal. Combustion and Flame, 134(1-2), 107-117.
  • 34. İnal, S., Aydıner, K., 2019. Kömürün Kendiliğinden Yanması ve Etkileyen Faktörler. Bilimsel Madencilik Dergisi, 58(2), 145-165. 35. Güney, M., 1968. Certain Factors Affecting the Oxidation and Spontaneous Combustion of Coal. University of Nottingham, Mining Department Magazine, 20, 71 - 80.
  • 36. Kural, O., 1991. Kömür, Kurtiş Matbaası. 976s.
  • 37. Kural, O., 1998. Kömür Özellikleri, Teknolojisi ve Çevre İlişkileri. Özgün Ofset Matbaacılık A.Ş., 785.
  • 38. Uludağ, S., 2001. Assessing Spontaneous Combustion Risk in South African Coal Mines Using a GIS Tool. M.Sc Dissertation, University of Witwatersrand, South Africa.
  • 39. Kaymakçi, E., Didari, V., 2002. Relations Between Coal Properties and Spontaneous Combustion Parameters. Turkish Journal of Engineering and Environmental Sciences, 26(1), 59-64.
  • 40. Ramlu, M.A., 1991. Mine Disasters and Mine Rescue. A.A. Balkema, Rotterdam, 397.
  • 41. Önal, G., Ateşok, G., Perek, K.T., 2014. Cevher Hazırlama El Kitabı. Yurt Madenciliğini Geliştirme Vakfı Yayınları, İstanbul.
  • 42. Coward, H.F., 1957. Research on Spontaneous Combustion of Coal in Mines-a Review. Research Report 142, Great Britain: Safety in Mines Research Establishment.
  • 43. Chamberlain, E.A.C., Hall, D.A., 1973. The Liability of Coals to Spontaneous Combustion. Colliery Guardian, 65-72.
  • 44. Allardice, D.J. Evans, D.G., 1978. Moisture in Coal, in C. Karr, Jr_ (Ed.), Analytical Methods for Coal and Coal Products. Vol 1, Academic Press, New York, 247-262.
  • 45. Kemal, M., Arslan, V., 2010. Kömür Teknolojisi. Genişletilmiş 5.baskı, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, 033, İzmir.
  • 46. Beamish, B.B., Hamilton, G.R., 2005. Effect of Moisture Content on the R70 Self-Heating Rate of Callide Coal. International Journal of Coal Geology, 64, 133-138.
  • 47. Panaseiko, N.P., 1974. Influence of Moisture on the Low Temperature Oxidation of Coals. Solid Fuel Chemistry, 8, 21-24.
  • 48. Chen, X.D., Stott, J.B., 1993. The Effect of Moisture Content on the Oxidation Rate of Coal During Near-Equilibrium Drying and Wetting at 50 °C. Fuel, 72, 787-792.
  • 49. Kadioglu, Y., Varamaz, M., 2003. The Effect of Moisture Content and Air-Drying on Spontaneous Combustion Characteristics of Two Turkish Lignites. Fuel, 82, 1685-1693.
  • 50. Akgün, F., Arisoy, A. ,1994. Effect of Particle Size on the Spontaneous Heating of a Coal Stockpile. Combustion and Flame, 99(1), 137-146.
  • 51. Ren, T.X., Edwards, J.S., Clarke, D., 1999. Adiabatic Oxidation Study on the Propensity of Pulverised Coals to Spontaneous Combustion. Fuel, 78(14), 1611-1620.
  • 52. Küçük, A., Kadıoğlu, Y., Gülaboğlu, M.Ş., 2003. A Study of Spontaneous Combustion Characteristics of a Turkish Lignite: Particle Size, Moisture of Coal, Humidity of Air. Combustion and Flame, 133, 255-261.
  • 53. Didari, V., 1986. Yeraltı Ocaklarında Kömürün Kendiliğinden Yanması ve Risk İndeksleri. Madencilik Dergisi, 25, 4.
  • 54. Jena, S.S., 2011. Investigation in to Spontaneous Combustion Characteristics of Some Indian Coalsand Correlation Study with Their Intrinsic Properties. Bachelor Degree, Department of Mining Engineering National Institute of Technology Rourkela.
  • 55. Barış, K., 2010. Farklı Kömürleşme Derecesine Sahip Kömürlerde Düşük Sıcaklık Oksidasyonu. Doktora Tezi, Fen Bilimleri Enstitüsü, Zonguldak Karaelmas Üniversitesi, Zonguldak.
  • 56. Durucan, Ş., Güyagüler, T., 1985. Yeraltı Madenciliğinde Çevre Sorunları ve Kontrol Yöntemleri. Genel Maden İşçileri Yayını.
  • 57. Arisoy, A., Beamish, B., 2015. Mutual Effects of Pyrite and Moisture on Coal Self-Heating Rates and Reaction Rate Data for Pyrite Oxidation. Fuel, 139, 107-114.
  • 58. Beamish, B., Lin, Z., Beamish, R., 2012. Investigating the Influence of Reactive Pyrite on Coal Self-Heating. Proceedings of the Twelfth Coal Operators Conference, Wollongong, 294- 299.
  • 59. Stracher, G.B., Prakash, A., Ellina, V.S., 2010. Coal and Peat Fires - a Global Perspective. vol.I: coal, geology and combustion, 343s.
  • 60. Falcon, R.M., 1986. Spontaneous Combustion of The Organic Matter in Discards from the Witbank Coalfield. Journal of South African Institute of Mining and Metallurgy, 86, 243-250.
  • 61. Barış, K., Kızgut, S., Didari, V., 2012. Low- Temperature Oxidation of Some Turkish Coals. Fuel, 93, 423-432.
  • 62. Özdeniz, A.H., 2003. Kömür Stoklarındaki Kendiliğinden Yanma Olayının İncelenmesi. Doktora Tezi, Fen Bilimleri Enstitüsü, Selçuk Üniversitesi, Konya.
  • 63. Sen, R., Srivastava, S.K., Singh, M.M., 2009. Aerial Oxidation of Coal-Analytical Methods, Instrumental Techniques and Test Methods: A Survey. Indian Journal of Chemical Technology, 16, 103-135.
  • 64. Schmidt, L.D., Elder, J.L., 1940. Atmospheric Oxidation of Coal at Moderate Temperatures- Rates of the Oxidation Reaction for Represantative Coking Coals. Industrial and Engineering Chemistry, 32(2), 249-256.
  • 65. Chamberlain, E.A., Hall, D.A., Thirlaway, J.T., 1970. The Ambient Temperature Oxidation of Coal in Relation to the Early Detection of Spontaneous Heating. Mining Engineer, 130, 1-16.
  • 66. Chamberlain, E.A., Barrass, G., Thirlaway, J.T., 1976. Gases Evolved and Possible Reactions During Low Temperature Oxidation of Coal. Fuel, 55, 217-222.
  • 67. Gill, F., Browning, E., 1971. Spontaneous Combustion in Coal Mines. Colliery Guardian, 219, 79-85.
  • 68. Mahadevan, V., Ramlu, M., 1985. Fire Risk Rating of Coal Mines due to Spontaneous Heating. Journal of Mines, Metals and Fuels, 33, 357-362.
  • 69. Morris, R., Atkinson, T., 1986. Geological and Mining Factors Affecting Spontaneous Heating of Coal. Mining Science and Technolgy, 3, 217-231.
  • 70. Banerjee, S.C., 1985. Spontaneous Combustion of Coal and Mine Fires. A.A. Balkema/ Rotterdam, 167.
  • 71. Kural, O., 1988. Kömür Kimyası ve Teknolojisi. 657.
  • 72. Erkan, H., 1964. Kömürün Depolanması. Madencilik, 3, 12-13.
  • 73. Karpuz, C., Güyagüler, T., Bağcı, S., Bozdağ, T., Başarır, H., Keskin, S., 2000. Linyitlerin Kendiliğinden Yanmaya Yatkınlık Derecelerinin Tespiti: Bölüm I - Risk Sınıflaması Derlemesi. Madencilik Dergisi, Eylül/Aralık, 3-13.
  • 74. Yılmaz, A.İ., 2002. Eynez Yeraltı Ocağı Havalandırma Sisteminin Ocak Yangınlarına Etkisi. Doktora Tezi, Fen Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir.
  • 75. www.cli.gov.tr.
  • 76. Feng, K.K., Chakravorty, R.N., Cochrane, T.S., 1973. Spontaneous Combustion-a Coal Mining Hazard. The Canadian Mining and Metallurgical Journal.
  • 77. Ören, Ö., Şensöğüt, C., 2007. Kütahya Bölgesi Linyitlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Madencilik, 46(1), 15-23.

Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması

Yıl 2020, Cilt: 35 Sayı: 3, 593 - 608, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846292

Öz

Yapılan bu çalışmada, Türkiye Kömür İşletmeleri (TKİ) bünyesinde faaliyet gösteren Çan Linyitleri İşletme Müdürlüğü (ÇLİ) açık ocak ve stoklarından temin edilen kömür numunelerinin kendiliğinden yanma karakteristikleri kesişim noktası metodu ile belirlenmiştir. Buna göre elde edilen sonuçlarda, kömürlerin ortalama sıcaklık artışlarının (OSA) 0,92-3,93 °C dk-1; tutuşma ya da kesişim noktası sıcaklıklarının (KNS) 150-182 °C; yatkınlık indeksi (IFCC) değerlerinin ise 5,04-33,33 dk-1 arasında değiştiği yapılan deneylerde tespit edilmiştir. Sonuç olarak; 21 adet kömür örneğinin kendiliğinden yanmaya yatkınlıklarının “orta-yüksek” risk kategorisinde yer aldığı belirlenmiştir.

Kaynakça

  • 1. Carras, J. N., Day, S. J., Saghafi, A., Williams, D.J., 2009. Greenhouse Gas Emissions from Low-Temperature Oxidation and Spontaneous Combustion at Open-Cut Coal Mines in Australia. International Journal of Coal Geology, 78(2), 161-168.
  • 2. Wang, H., Chen, C., 2015. Experimental Study on Greenhouse Gas Emissions Caused By Spontaneous Coal Combustion. Energy and Fuels, 29(8), 5213-5221.
  • 3. Fierro, V., Miranda, J.L., Romero, C., Andrés, J.M., Arriaga, A., Schmal, D., Visser, G.H., 1999. Prevention of Spontaneous Combustion in Coal Stockpiles: Experimental Results in Coal Storage Yard. Fuel Processing Technology, 59(1), 23-24.
  • 4. Arisoy, A., Beamish, B., Çetegen, E., 2006. Modelling Spontaneous Combustion of Coal. Turkish Journal of Engineering and Environmental Sciences, 30, 193-201.
  • 5. Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkleman, R.B., Blake, D.R., McCormack, J.K., Schroeder, P., 2007. The Spontaneous Combustion of Coal and its By- Products in the Witbank and Sasolburg Coalfields of South Africa. International Journal of Coal Geology, 72(2), 124-140.
  • 6. Muduli, L., Jana, P.K., Mishra, D.P., 2018. Wireless Sensor Network Based Fire Monitoring in Underground Coal Mines: A Fuzzy Logic Approach. Process Safety and Environmental Protection, 113, 435-447.
  • 7. Wachowicz, J., 2008. Analysis of Underground Fires in Polish Hard Coal Mines. Journal of China University of Mining and Technology, 18(3), 332-336.
  • 8. Xia, T., Zhou, F., Wang, X., Zhang, Y., Li, Y., Kang, J., Liu, J., 2016. Controlling Factors of Symbiotic Disaster Between Coal Gas and Spontaneous Combustion in Longwall Mining Gobs. Fuel, 182, 886-896.
  • 9. Kong, B., Li, Z., Yang, Y., Liu, Z., Yan, D., 2017. A Review on the Mechanism, Risk Evaluation, and Prevention of Coal Spontaneous Combustion in China. Environmental Science and Pollution Research, 24(30), 23453-23470.
  • 10. Singh, R.V.K., 2013. Spontaneous Heating and Fire in Coal Mines. Procedia Engineering, 62, 78-90.
  • 11. Mohalik, N.K., Lester, E., Lowndes, I.S., Singh, V.K., 2016. Estimation of Greenhouse Gas Emissions from Spontaneous Combustion/Fire of Coal in Opencast Mines Indian Context. Carbon Management, 7(5-6), 317-332.
  • 12. Nimaje, D.S., Tripathy, D.P., 2016. Characterization of Some Indian Coals to Assess Their Liability to Spontaneous Combustion. Fuel, 163, 139-147.
  • 13. Wang, L., Ren, T., Nie, B., Chen, Y., Lv, C., Tang, H., Zhang, J., 2015a. Development of a Spontaneous Combustion Tarps System Based On BP Neural Network. International Journal of Mining Science and Technology, 25(5), 803-810.
  • 14. Liang, Y., Zhang, J., Ren, T., Wang, Z., Song, S., 2018. Application of Ventilation Simulation to Spontaneous Combustion Control in Underground Coal Mine: A Case Study From Bulianta Colliery. International Journal of Mining Science and Technology, 28, 231-242.
  • 15. Onifade, M., Genc, B., 2019. A Review of Spontaneous Combustion Studies-South African Context. International Journal of Mining, Reclamation and Environment, 33(8), 527-547.
  • 16. Taraba, B., Michalec, Z., 2011. Effect of Longwall Face Advance Rate on Spontaneous Heating Process in the Gob Area-CFD Modelling. Fuel, 90(8), 2790-2797.
  • 17. Taraba, B., Michalec, Z., Michalcová, V., Blejchař, T., Bojko, M., Kozubková, M., 2014. CFD Simulations of the Effect of Wind on the Spontaneous Heating of Coal Stockpiles. Fuel, 118, 107-112.
  • 18. De Rosa, M. I., 2004. Analysis of Mine Fires for All USA Underground and Surface Coal Mining Categories:1990-1999. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety And Health (NIOSH), Pittsburgh Research Laboratory Pittsburgh, PA, 35 s.
  • 19. Nugroho, Y.S., McIntosh, A.C., Gibbs, B.M., 1998. Using the Crossing Point Method to Assess the Self-Heating Behavior of Indonesian Coals. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 27(2), 2981-2989.
  • 20. Hogland, W., Bramryd, T., Persson, I., 1996. Physical, Biological and Chemical Effects of Unsorted Fractions of Industrial Solid Waste in Waste Fuel Storage. Waste Management & Research, 14, 197-210.
  • 21. Hogland, W., Marques, M., 2003. Physical, Biological and Chemical Processes During Storage and Spontaneous Combustion of Waste Fuel. Resources, Conservation and Recycling, 40(1), 53-69.
  • 22. Pis, J., de la Puente, G., Fuente, E., Morán, A., Rubiera, F., 1996. A Study of the Self-Heating of Fresh and Oxidized Coals by Differential Thermal Analysis. Thermochimica Acta, 279, 93-101.
  • 23. Zhu, H., Song, Z., Tan, B., Hao, Y., 2013. Numerical Investigation and Theoretical Prediction of Self-Ignition Characteristics of Coarse Coal Stockpiles. Journal of Loss Prevention in the Process Industries, 26(1), 236-244.
  • 24. Qi, X., Wang, D., Zhong, X., Gu, J., Xu, T., 2010. Characteristics of Oxygen Consumption of Coal at Programmed Temperatures. Mining Science and Technology (China), 20(3), 372-377.
  • 25. Carras, J.N., Young, B.C., 1994. Self-Heating of Coal and Related Materials: Models, Application and Test Methods. Progress in Energy and Combustion Science, 20(1), 1-15.
  • 26. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., 2003b. Pathways for Production of CO2 & CO in Low-Temperature Oxidation of Coal. Energy & Fuels, 17(1), 150-158.
  • 27. Gürdal, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H., Song, W., 2015. The Properties of Çan Basin Coals (Çanakkale-Turkey): Spontaneous Combustion and Combustion By-Products. International Journal of Coal Geology, 138, 1-15.
  • 28. Wang, Y., Shi, G., Guo, Z., 2015b. Coupled Multi-Stage Oxidation and Thermodynamic Process in Coal-Bearing Strata Under Spontaneous Combustion Condition. International Symposium on Advances in Computational Heat Transfer, Rutgers University, Piscataway, NJ, USA, 1-12.
  • 29. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., 2003a. Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modelling. Progress in Energy and Combustion Science, 29(6), 487-513.
  • 30. Nelson, M., Chen, X.D., 2007. Survey of Experimental Work on the Self-Heating and Spontaneous Combustion of Coal. Geology of Coal Fires: Case Studies From Around the World: Geological Society of America Reviews in Engineering Geology, XVIII, 31-83.
  • 31. Nalbandian, H., 2010. Propensity of Coal to Self- Heat. International Energy Agency, Clean Coal Centre, 45.
  • 32. Shi, T., Wang, X., Deng, J., Wen, Z., 2005. The Mechanism at the Initial Stage of the Room- Temperature Oxidation of Coal. Combustion and Flame, 140(4), 332-345.
  • 33. Wang, H., Dlugogorski, B.Z., Kennedy, E.M., 2003. Analysis of the Mechanism of the Low- Temperature Oxidation of Coal. Combustion and Flame, 134(1-2), 107-117.
  • 34. İnal, S., Aydıner, K., 2019. Kömürün Kendiliğinden Yanması ve Etkileyen Faktörler. Bilimsel Madencilik Dergisi, 58(2), 145-165. 35. Güney, M., 1968. Certain Factors Affecting the Oxidation and Spontaneous Combustion of Coal. University of Nottingham, Mining Department Magazine, 20, 71 - 80.
  • 36. Kural, O., 1991. Kömür, Kurtiş Matbaası. 976s.
  • 37. Kural, O., 1998. Kömür Özellikleri, Teknolojisi ve Çevre İlişkileri. Özgün Ofset Matbaacılık A.Ş., 785.
  • 38. Uludağ, S., 2001. Assessing Spontaneous Combustion Risk in South African Coal Mines Using a GIS Tool. M.Sc Dissertation, University of Witwatersrand, South Africa.
  • 39. Kaymakçi, E., Didari, V., 2002. Relations Between Coal Properties and Spontaneous Combustion Parameters. Turkish Journal of Engineering and Environmental Sciences, 26(1), 59-64.
  • 40. Ramlu, M.A., 1991. Mine Disasters and Mine Rescue. A.A. Balkema, Rotterdam, 397.
  • 41. Önal, G., Ateşok, G., Perek, K.T., 2014. Cevher Hazırlama El Kitabı. Yurt Madenciliğini Geliştirme Vakfı Yayınları, İstanbul.
  • 42. Coward, H.F., 1957. Research on Spontaneous Combustion of Coal in Mines-a Review. Research Report 142, Great Britain: Safety in Mines Research Establishment.
  • 43. Chamberlain, E.A.C., Hall, D.A., 1973. The Liability of Coals to Spontaneous Combustion. Colliery Guardian, 65-72.
  • 44. Allardice, D.J. Evans, D.G., 1978. Moisture in Coal, in C. Karr, Jr_ (Ed.), Analytical Methods for Coal and Coal Products. Vol 1, Academic Press, New York, 247-262.
  • 45. Kemal, M., Arslan, V., 2010. Kömür Teknolojisi. Genişletilmiş 5.baskı, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, 033, İzmir.
  • 46. Beamish, B.B., Hamilton, G.R., 2005. Effect of Moisture Content on the R70 Self-Heating Rate of Callide Coal. International Journal of Coal Geology, 64, 133-138.
  • 47. Panaseiko, N.P., 1974. Influence of Moisture on the Low Temperature Oxidation of Coals. Solid Fuel Chemistry, 8, 21-24.
  • 48. Chen, X.D., Stott, J.B., 1993. The Effect of Moisture Content on the Oxidation Rate of Coal During Near-Equilibrium Drying and Wetting at 50 °C. Fuel, 72, 787-792.
  • 49. Kadioglu, Y., Varamaz, M., 2003. The Effect of Moisture Content and Air-Drying on Spontaneous Combustion Characteristics of Two Turkish Lignites. Fuel, 82, 1685-1693.
  • 50. Akgün, F., Arisoy, A. ,1994. Effect of Particle Size on the Spontaneous Heating of a Coal Stockpile. Combustion and Flame, 99(1), 137-146.
  • 51. Ren, T.X., Edwards, J.S., Clarke, D., 1999. Adiabatic Oxidation Study on the Propensity of Pulverised Coals to Spontaneous Combustion. Fuel, 78(14), 1611-1620.
  • 52. Küçük, A., Kadıoğlu, Y., Gülaboğlu, M.Ş., 2003. A Study of Spontaneous Combustion Characteristics of a Turkish Lignite: Particle Size, Moisture of Coal, Humidity of Air. Combustion and Flame, 133, 255-261.
  • 53. Didari, V., 1986. Yeraltı Ocaklarında Kömürün Kendiliğinden Yanması ve Risk İndeksleri. Madencilik Dergisi, 25, 4.
  • 54. Jena, S.S., 2011. Investigation in to Spontaneous Combustion Characteristics of Some Indian Coalsand Correlation Study with Their Intrinsic Properties. Bachelor Degree, Department of Mining Engineering National Institute of Technology Rourkela.
  • 55. Barış, K., 2010. Farklı Kömürleşme Derecesine Sahip Kömürlerde Düşük Sıcaklık Oksidasyonu. Doktora Tezi, Fen Bilimleri Enstitüsü, Zonguldak Karaelmas Üniversitesi, Zonguldak.
  • 56. Durucan, Ş., Güyagüler, T., 1985. Yeraltı Madenciliğinde Çevre Sorunları ve Kontrol Yöntemleri. Genel Maden İşçileri Yayını.
  • 57. Arisoy, A., Beamish, B., 2015. Mutual Effects of Pyrite and Moisture on Coal Self-Heating Rates and Reaction Rate Data for Pyrite Oxidation. Fuel, 139, 107-114.
  • 58. Beamish, B., Lin, Z., Beamish, R., 2012. Investigating the Influence of Reactive Pyrite on Coal Self-Heating. Proceedings of the Twelfth Coal Operators Conference, Wollongong, 294- 299.
  • 59. Stracher, G.B., Prakash, A., Ellina, V.S., 2010. Coal and Peat Fires - a Global Perspective. vol.I: coal, geology and combustion, 343s.
  • 60. Falcon, R.M., 1986. Spontaneous Combustion of The Organic Matter in Discards from the Witbank Coalfield. Journal of South African Institute of Mining and Metallurgy, 86, 243-250.
  • 61. Barış, K., Kızgut, S., Didari, V., 2012. Low- Temperature Oxidation of Some Turkish Coals. Fuel, 93, 423-432.
  • 62. Özdeniz, A.H., 2003. Kömür Stoklarındaki Kendiliğinden Yanma Olayının İncelenmesi. Doktora Tezi, Fen Bilimleri Enstitüsü, Selçuk Üniversitesi, Konya.
  • 63. Sen, R., Srivastava, S.K., Singh, M.M., 2009. Aerial Oxidation of Coal-Analytical Methods, Instrumental Techniques and Test Methods: A Survey. Indian Journal of Chemical Technology, 16, 103-135.
  • 64. Schmidt, L.D., Elder, J.L., 1940. Atmospheric Oxidation of Coal at Moderate Temperatures- Rates of the Oxidation Reaction for Represantative Coking Coals. Industrial and Engineering Chemistry, 32(2), 249-256.
  • 65. Chamberlain, E.A., Hall, D.A., Thirlaway, J.T., 1970. The Ambient Temperature Oxidation of Coal in Relation to the Early Detection of Spontaneous Heating. Mining Engineer, 130, 1-16.
  • 66. Chamberlain, E.A., Barrass, G., Thirlaway, J.T., 1976. Gases Evolved and Possible Reactions During Low Temperature Oxidation of Coal. Fuel, 55, 217-222.
  • 67. Gill, F., Browning, E., 1971. Spontaneous Combustion in Coal Mines. Colliery Guardian, 219, 79-85.
  • 68. Mahadevan, V., Ramlu, M., 1985. Fire Risk Rating of Coal Mines due to Spontaneous Heating. Journal of Mines, Metals and Fuels, 33, 357-362.
  • 69. Morris, R., Atkinson, T., 1986. Geological and Mining Factors Affecting Spontaneous Heating of Coal. Mining Science and Technolgy, 3, 217-231.
  • 70. Banerjee, S.C., 1985. Spontaneous Combustion of Coal and Mine Fires. A.A. Balkema/ Rotterdam, 167.
  • 71. Kural, O., 1988. Kömür Kimyası ve Teknolojisi. 657.
  • 72. Erkan, H., 1964. Kömürün Depolanması. Madencilik, 3, 12-13.
  • 73. Karpuz, C., Güyagüler, T., Bağcı, S., Bozdağ, T., Başarır, H., Keskin, S., 2000. Linyitlerin Kendiliğinden Yanmaya Yatkınlık Derecelerinin Tespiti: Bölüm I - Risk Sınıflaması Derlemesi. Madencilik Dergisi, Eylül/Aralık, 3-13.
  • 74. Yılmaz, A.İ., 2002. Eynez Yeraltı Ocağı Havalandırma Sisteminin Ocak Yangınlarına Etkisi. Doktora Tezi, Fen Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir.
  • 75. www.cli.gov.tr.
  • 76. Feng, K.K., Chakravorty, R.N., Cochrane, T.S., 1973. Spontaneous Combustion-a Coal Mining Hazard. The Canadian Mining and Metallurgical Journal.
  • 77. Ören, Ö., Şensöğüt, C., 2007. Kütahya Bölgesi Linyitlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Madencilik, 46(1), 15-23.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Cem Şensöğüt Bu kişi benim

Özer Ören Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 3

Kaynak Göster

APA Şensöğüt, C., & Ören, Ö. (2020). Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3), 593-608. https://doi.org/10.21605/cukurovaummfd.846292
AMA Şensöğüt C, Ören Ö. Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması. cukurovaummfd. Eylül 2020;35(3):593-608. doi:10.21605/cukurovaummfd.846292
Chicago Şensöğüt, Cem, ve Özer Ören. “Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, sy. 3 (Eylül 2020): 593-608. https://doi.org/10.21605/cukurovaummfd.846292.
EndNote Şensöğüt C, Ören Ö (01 Eylül 2020) Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 3 593–608.
IEEE C. Şensöğüt ve Ö. Ören, “Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması”, cukurovaummfd, c. 35, sy. 3, ss. 593–608, 2020, doi: 10.21605/cukurovaummfd.846292.
ISNAD Şensöğüt, Cem - Ören, Özer. “Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/3 (Eylül 2020), 593-608. https://doi.org/10.21605/cukurovaummfd.846292.
JAMA Şensöğüt C, Ören Ö. Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması. cukurovaummfd. 2020;35:593–608.
MLA Şensöğüt, Cem ve Özer Ören. “Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 593-08, doi:10.21605/cukurovaummfd.846292.
Vancouver Şensöğüt C, Ören Ö. Çan Linyitlerinin Kendiliğinden Yanma Yatkınlıklarının Araştırılması. cukurovaummfd. 2020;35(3):593-608.