In this study, a 2-D numerical analysis was conducted the melting characteristics of phase change material (PCM) placed inside the container formed by using rectangular flat fins and to evaluate its effect on the average surface temperature of the PV panel accordingly. Flat fins were used in this study for the purpose of improving heat transfer and thermal enhancement in the latent heat storage system. To produce a two-dimensional analysis of the one-hour experimental study carried out under laboratory conditions, melting fraction, the temperature distribution and flow fields of the PCM were shown using ANSYS Fluent 18.2 software. The experimental results obtained from the previous study and the analysis results carried out in this study were quite similar and the difference between the average surface temperatures of the PV Panel was found to be 4.25%. In addition, the effects on the PV panel average surface temperature were observed by changing the initial ambient temperature and the amount of radiation.
Sivas Cumhuriyet University Scientific Research Projects
Proje Numarası
M-829
Kaynakça
[1] Ghoneim, A. A. (1989). Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems. Solar Energy, 42(3), 209-220.
[2] Evans, A. G., He, M. Y., Hutchinson, J. W., & Shaw, M. (2001). Temperature distribution in advanced power electronics systems and the effect of phase change materials on temperature suppression during power pulses. Journal of electronic packaging, 123(3), 211-217.
[3] Hasnain, S. M. (1998). Review on sustainable thermal energy storage technologies, Part II: cool thermal storage. Energy conversion and management, 39(11), 1139-1153.
[4] Jegadheeswaran, S., & Pohekar, S. D. (2009). Performance enhancement in latent heat thermal storage system: a review. Renewable and Sustainable energy reviews, 13(9), 2225-2244.
[5] Lu, W., Liu, Z., Flor, J. F., Wu, Y., & Yang, M. (2018). Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV. Applied energy, 225, 696-709.
[6] Huang, M. J., Eames, P. C., Norton, B., & Hewitt, N. J. (2011). Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells, 95(7), 1598-1603.
[7] Huang, M. J., Eames, P. C., & Norton, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of heat and mass transfer, 47(12-13), 2715-2733.
[8] Shatikian, V., Ziskind, G., & Letan, R. (2005). Numerical investigation of a PCM-based heat sink with internal fins. International journal of heat and mass transfer, 48(17), 3689-3706.
[9] Nayak, K. C., Saha, S. K., Srinivasan, K., & Dutta, P. (2006). A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. International Journal of Heat and Mass Transfer, 49(11-12), 1833-1844.
[10] Fok, S. C., Shen, W., & Tan, F. L. (2010). Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. International journal of thermal sciences, 49(1), 109-117.
[11] Biwole, P. H., Groulx, D., Souayfane, F., & Chiu, T. (2018). Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure. International Journal of Thermal Sciences, 124, 433-446.
[12] Huang, M. J., Eames, P. C., & Norton, B. (2006). Phase change materials for limiting temperature rise in building integrated photovoltaics. Solar energy, 80(9), 1121-1130.
[13] Khanna, S., Reddy, K. S., & Mallick, T. K. (2018). Effect of climate on electrical performance of finned phase change material integrated solar photovoltaic. Solar Energy, 174, 593-605.
[14] Atkin, P., & Farid, M. M. (2015). Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy, 114, 217-228.
[15] Sharma, S., Micheli, L., Chang, W., Tahir, A. A., Reddy, K. S., & Mallick, T. K. (2017). Nano-enhanced phase change material for thermal management of BICPV. Applied Energy, 208, 719-733.
[16] Tan, L., Date, A., Fernandes, G., Singh, B., & Ganguly, S. (2017). Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Procedia, 110, 83-88.
[17] Nehari, T., Benlakam, M., & Nehari, D. (2016). Effect of the fins length for the passive cooling of the photovoltaic panels. Periodica Polytechnica Mechanical Engineering, 60(2), 89-95.
[18] Indartono, Y. S., Suwono, A., & Pratama, F. Y. (2016). Improving photovoltaics performance by using yellow petroleum jelly as phase change material. International Journal of Low-Carbon Technologies, 11(3), 333-337.
[19] Bayat, M. M., Buyruk, E., & Can, A. (2023). Experimental Investigation of PV Panel Performance by Using PCM with Different Fin Geometries. Transactions of FAMENA, 47(4), 97-108.
[20] Indartono, Y. S., Prakoso, S. D., Suwono, A., Zaini, I. N., & Fernaldi, B. (2015, July). Simulation and experimental study on effect of phase change material thickness to reduce temperature of photovoltaic panel. In IOP conference series: materials science and engineering (Vol. 88, No. 1, p. 012049). IOP Publishing.
Kütüphaneme Ekle
Düz kanat-Faz değişim malzemesi entegreli fotovoktaik modelinin 2 boyutlu sayısal analizi
Bu çalışmada, dikdörtgen düz kanatçıklar kullanılarak oluşturulan kabın içerisine yerleştirilen faz değişim malzemesinin (FDM) erime karakteristikleri 2 boyutlu sayısal olarak analiz edilmiş ve buna bağlı olarak PV panelin ortalama yüzey sıcaklığına etkisi değerlendirilmiştir. Düz kanatçıklar bu çalışmada gizli ısı depolama sisteminde ısı transferini ve termal iyileştirmeyi iyileştirmek amacıyla kullanılmıştır. Laboratuvar koşullarında gerçekleştirilen bir saatlik deneysel çalışmanın iki boyutlu analizini üretmek için, FDM'nin erime oranı, sıcaklık dağılımı ve akış alanları ANSYS Fluent 18.2 yazılımı kullanılarak gösterilmiştir. Önceki çalışmadan elde edilen deneysel sonuçlar ile bu çalışmada gerçekleştirilen analiz sonuçları oldukça benzer bulunmuş ve PV Panelin ortalama yüzey sıcaklıkları arasındaki fark %4,25 olarak bulunmuştur. Ayrıca, başlangıç ortam sıcaklığı ve radyasyon miktarı değiştirilerek PV panelin ortalama yüzey sıcaklığı üzerindeki etkiler gözlenmiştir.
Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri
Proje Numarası
M-829
Kaynakça
[1] Ghoneim, A. A. (1989). Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems. Solar Energy, 42(3), 209-220.
[2] Evans, A. G., He, M. Y., Hutchinson, J. W., & Shaw, M. (2001). Temperature distribution in advanced power electronics systems and the effect of phase change materials on temperature suppression during power pulses. Journal of electronic packaging, 123(3), 211-217.
[3] Hasnain, S. M. (1998). Review on sustainable thermal energy storage technologies, Part II: cool thermal storage. Energy conversion and management, 39(11), 1139-1153.
[4] Jegadheeswaran, S., & Pohekar, S. D. (2009). Performance enhancement in latent heat thermal storage system: a review. Renewable and Sustainable energy reviews, 13(9), 2225-2244.
[5] Lu, W., Liu, Z., Flor, J. F., Wu, Y., & Yang, M. (2018). Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV. Applied energy, 225, 696-709.
[6] Huang, M. J., Eames, P. C., Norton, B., & Hewitt, N. J. (2011). Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Solar Energy Materials and Solar Cells, 95(7), 1598-1603.
[7] Huang, M. J., Eames, P. C., & Norton, B. (2004). Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of heat and mass transfer, 47(12-13), 2715-2733.
[8] Shatikian, V., Ziskind, G., & Letan, R. (2005). Numerical investigation of a PCM-based heat sink with internal fins. International journal of heat and mass transfer, 48(17), 3689-3706.
[9] Nayak, K. C., Saha, S. K., Srinivasan, K., & Dutta, P. (2006). A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. International Journal of Heat and Mass Transfer, 49(11-12), 1833-1844.
[10] Fok, S. C., Shen, W., & Tan, F. L. (2010). Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. International journal of thermal sciences, 49(1), 109-117.
[11] Biwole, P. H., Groulx, D., Souayfane, F., & Chiu, T. (2018). Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure. International Journal of Thermal Sciences, 124, 433-446.
[12] Huang, M. J., Eames, P. C., & Norton, B. (2006). Phase change materials for limiting temperature rise in building integrated photovoltaics. Solar energy, 80(9), 1121-1130.
[13] Khanna, S., Reddy, K. S., & Mallick, T. K. (2018). Effect of climate on electrical performance of finned phase change material integrated solar photovoltaic. Solar Energy, 174, 593-605.
[14] Atkin, P., & Farid, M. M. (2015). Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Solar Energy, 114, 217-228.
[15] Sharma, S., Micheli, L., Chang, W., Tahir, A. A., Reddy, K. S., & Mallick, T. K. (2017). Nano-enhanced phase change material for thermal management of BICPV. Applied Energy, 208, 719-733.
[16] Tan, L., Date, A., Fernandes, G., Singh, B., & Ganguly, S. (2017). Efficiency gains of photovoltaic system using latent heat thermal energy storage. Energy Procedia, 110, 83-88.
[17] Nehari, T., Benlakam, M., & Nehari, D. (2016). Effect of the fins length for the passive cooling of the photovoltaic panels. Periodica Polytechnica Mechanical Engineering, 60(2), 89-95.
[18] Indartono, Y. S., Suwono, A., & Pratama, F. Y. (2016). Improving photovoltaics performance by using yellow petroleum jelly as phase change material. International Journal of Low-Carbon Technologies, 11(3), 333-337.
[19] Bayat, M. M., Buyruk, E., & Can, A. (2023). Experimental Investigation of PV Panel Performance by Using PCM with Different Fin Geometries. Transactions of FAMENA, 47(4), 97-108.
[20] Indartono, Y. S., Prakoso, S. D., Suwono, A., Zaini, I. N., & Fernaldi, B. (2015, July). Simulation and experimental study on effect of phase change material thickness to reduce temperature of photovoltaic panel. In IOP conference series: materials science and engineering (Vol. 88, No. 1, p. 012049). IOP Publishing.
Toplam 20 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Fotovoltaik Güç Sistemleri, Enerji, Makine Mühendisliğinde Sayısal Yöntemler
M. M. Bayat, E. Buyruk, ve M. Caner, “2-D Numerical Analysis Of The Photovoltaic-Phase Change Material (PV-PCM) Model With Flat Fins”, CÜMFAD, c. 3, sy. 2, ss. 177–181, 2025.