Araştırma Makalesi
BibTex RIS Kaynak Göster

ANFIS-Driven Optimization of Indoor Navigation Systems for Automated Guided Vehicles Utilizing UWB Signals

Yıl 2025, Cilt: 3 Sayı: 1, 38 - 54, 30.06.2025

Öz

This paper chronicles the fusion of the Adaptive Neural Fuzzy Inference System (ANFIS) and Ultra Wideband (UWB) technology for navigation system optimization in Indoor Autonomous Guided Vehicles (AGVs). In the Industry 4.0 era, the significance of accurate, effective and flexible AGV systems cannot be overemphasized in the industrial applications of today. UWB has centimetre-level location accuracy because of its low power consumption and large bandwidth, and is therefore very suitable for challenging indoor environments. In response to the challenge of high installation costs and environmental sensitivity, the ANFIS model is utilized to integrate the learning ability of artificial neural networks with the inference ability of fuzzy logic in order to increase the accuracy and effectiveness of UWB signal data processing. The real-time adaptive navigation of the system is also supported by dynamically adjusting the motor control according to the vehicle position using Pulse Width Modulation (PWM). The approach enables AGVs to adapt to environmental changes in a flexible manner, improving their performance in dynamic industrial environments. Future work can involve the investigation of UWB integration with other sensors or sensor technologies or application in cluster robotics to enable coordination and navigation in dynamic environments to be improved.

Kaynakça

  • [1] M. De Ryck, M. Versteyhe, and F. Debrouwere, ‘Automated guided vehicle systems, state-of-the-art control algorithms and techniques’, Journal of Manufacturing Systems, vol. 54, pp. 152–173, Jan. 2020, doi: 10.1016/j.jmsy.2019.12.002.
  • [2] R. Cupek et al., ‘Autonomous Guided Vehicles for Smart Industries – The State-of-the-Art and Research Challenges’, in Computational Science – ICCS 2020, vol. 12141, V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira, Eds., in Lecture Notes in Computer Science, vol. 12141. , Cham: Springer International Publishing, 2020, pp. 330–343. doi: 10.1007/978-3-030-50426-7_25.
  • [3] L. Liu et al., ‘Computing Systems for Autonomous Driving: State of the Art and Challenges’, IEEE Internet Things J., vol. 8, no. 8, pp. 6469–6486, Apr. 2021, doi: 10.1109/ JIOT.2020.3043716.
  • [4] Military Equipment and Technologies Research Agency - In Flight Test Research and Innovation Center, Craiova, Romania, D. Țigăniuc, and P. Negrea, ‘INDOOR NAVIGATION: NECESSITY, MECHANISMS AND EVOLUTION’, AFASES 2023, vol. 24, pp. 175–184, Jul. 2023, doi: 10.19062/2247-3173.2023.24.22.
  • [5] D. Feng, C. Wang, C. He, Y. Zhuang, and X.-G. Xia, ‘Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation’, IEEE Internet Things J., vol. 7, no. 4, pp. 3133–3146, Apr. 2020, doi: 10.1109/JIOT. 2020.2965115.
  • [6] M. Alhafnawi et al., ‘A Survey of Indoor and Outdoor UAV-Based Target Tracking Systems: Current Status, Challenges, Technologies, and Future Directions’, IEEE Access, vol. 11, pp. 68324–68339, 2023, doi: 10.1109/ACCESS.2023.3292 302.
  • [7] S. M. Asaad and H. S. Maghdid, ‘A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges and Future Perspectives’, Computer Networks, vol. 212, p. 109041, Jul. 2022, doi: 10.1016/j.comnet.2022. 109041.
  • [8] J.-S. R. Jang, ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, Jun. 1993, doi: 10.1109/21.256541.
  • [9] R. Qamar and B. Ali Zardari, ‘Artificial Neural Networks: An Overview’, Mesopotamian Journal of Computer Science, pp. 130–139, Aug. 2023, doi: 10.58496/MJCSC/2023/015.
  • [10] C. A. Reyes-García and A. A. Torres-García, ‘Fuzzy logic and fuzzy systems’, in Biosignal Processing and Classification Using Computational Learning and Intelligence, Elsevier, 2022, pp. 153–176. doi: 10.1016/B978-0-12-820125-1.00020-8.
  • [11] S. Chopra, G. Dhiman, A. Sharma, M. Shabaz, P. Shukla, and M. Arora, ‘[Retracted] Taxonomy of Adaptive Neuro‐Fuzzy Inference System in Modern Engineering Sciences’, Computational Intelligence and Neuroscience, vol. 2021, no. 1, p. 6455592, Jan. 2021, doi: 10.1155/2021/6455592.
  • [12] S. Pan, X. Xu, L. Zhang, and Y. Yao, ‘A Novel SINS/USBL Tightly Integrated Navigation Strategy Based on Improved ANFIS’, IEEE Sensors J., vol. 22, no. 10, pp. 9763–9777, May 2022, doi: 10.1109/JSEN.2022.3167394.
  • [13] D. Deliyska, N. Yanev, and M. Trifonova, ‘Methods for developing an indoor navigation system’, E3S Web Conf., vol. 280, p. 04001, 2021, doi: 10.1051/e3sconf/202128004001.
  • [14] W. Jiang, Z. Cao, B. Cai, B. Li, and J. Wang, ‘Indoor and Outdoor Seamless Positioning Method Using UWB Enhanced Multi-Sensor Tightly-Coupled Integration’, IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10633–10645, Oct. 2021, doi: 10.1109/TVT.2021.3110325.
  • [15] W. Zhao, L. Xu, B. Qi, J. Hu, T. Wang, and T. Runge, ‘Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing’, IEEE Access, vol. 8, pp. 42909–42923, 2020, doi: 10.1109/ACCESS.2020.2978123.
  • [16] C. Gentner, M. Ulmschneider, I. Kuehner, and A. Dammann, ‘WiFi-RTT Indoor Positioning’, in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA: IEEE, Apr. 2020, pp. 1029–1035. doi: 10.1109/PLANS46316.2020.9110232.
  • [17] Jayahariprabhu. M, ‘Development of an Adaptive Neuro-Fuzzy System to Navigate the AGV’s’, in 2024 2nd International Conference on Disruptive Technologies (ICDT), Greater Noida, India: IEEE, Mar. 2024, pp. 1103–1108. doi: 10.1109/ICDT61202.2024.10488944.
  • [18] M. K. Singh, D. R. Parhi, and J. K. Pothal, ‘ANFIS Approach for Navigation of Mobile Robots’, in 2009 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, Kerala, India: IEEE, 2009, pp. 727–731. doi: 10.1109/ART Com.2009.119.
  • [19] D. R. Parhi and M. K. Singh, ‘Navigational path analysis of mobile robots using an adaptive neuro-fuzzy inference system controller in a dynamic environment’, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 224, no. 6, pp. 1369–1381, Jun. 2010, doi: 10.1243/09544062JMES1751.
  • [20] B. Van Herbruggen et al., ‘Wi-PoS: A Low-Cost, Open Source Ultra-Wideband (UWB) Hardware Platform with Long Range Sub-GHz Backbone’, Sensors, vol. 19, no. 7, p. 1548, Mar. 2019, doi: 10.3390/s19071548.
  • [21] R. Kshetrimayum, ‘An introduction to UWB communication systems’, IEEE Potentials, vol. 28, no. 2, pp. 9–13, Mar. 2009, doi: 10.1109/MPOT.2009.931847.
  • [22] M. M. Soliman, M. Alkaeed, Md. J. A. Pervez, I. A. Rafi, M. M. Hasan Mahfuz, and A. Musa, ‘A Comb Shape Slot UWB Antenna with Controllable Triple Band Rejection Features for Wimax/Wlan/5G/Satellite Applications’, in 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia: IEEE, Sep. 2020, pp. 362–367. doi: 10.1109/SCOReD50371.2020.9251006.
  • [23] G. Tiberi and M. Ghavami, ‘Ultra-Wideband (UWB) Systems in Biomedical Sensing’, Sensors, vol. 22, no. 12, p. 4403, Jun. 2022, doi: 10.3390/s22124403.
  • [24] S. P.S., S. Vijay, and S. M, ‘Ultra-Wideband Technology: Standards, Characteristics, Applications’, HELIX, vol. 10, no. 4, pp. 59–65, Aug. 2020, doi: 10.29042/2020-10-4-59-65.
  • [25] G. Carfano, H. Murguia, P. Gudem, and P. Mercier, ‘Impact of FR1 5G NR Jammers on UWB Indoor Position Location Systems’, in 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy: IEEE, Sep. 2019, pp. 1–8. doi: 10.1109/IPIN.2019.8911753.
  • [26] C. E. Shannon, ‘A Mathematical Theory of Communication’, Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.
  • [27] J.-S. R. Jang, ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, Jun. 1993, doi: 10.1109/21.256541.
  • [28] A. G. Yüksek, H. Arslan, O. Kaynar, E. Deli̇Baş, and A. Şeki̇R, ‘Comparison of the Effects of Different Dimensional Reduction Algorithms on the Training Performance of Anfis (Adaptive Neuro-Fuzzy Inference System) Model’, Cumhuriyet Science Journal, pp. 716–730, Dec. 2017, doi: 10.17776/csj.347653.
  • [29] S. Chopra, G. Dhiman, A. Sharma, M. Shabaz, P. Shukla, and M. Arora, ‘[Retracted] Taxonomy of Adaptive Neuro‐Fuzzy Inference System in Modern Engineering Sciences’, Computational Intelligence and Neuroscience, vol. 2021, no. 1, p. 6455592, Jan. 2021, doi: 10.1155/2021/6455592.
  • [30] B. Ruprecht et al., ‘Possibilistic Clustering Enabled Neuro Fuzzy Logic’, in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, United Kingdom: IEEE, Jul. 2020, pp. 1–8. doi: 10.1109/FUZZ48607.2020.9177593.
  • [31] Y. Türkay and A. G. Yüksek, ‘Investigating the Potential of an ANFIS-Based Maximum Power Point Tracking Controller for Solar Photovoltaic Systems’, IEEE Access, vol. 13, pp. 41768–41784, 2025, doi: 10.1109/ACCESS. 2025.3547954.
  • [32] B. Haznedar and A. Kalinli, ‘Training ANFIS structure using simulated annealing algorithm for dynamic systems identification’, Neurocomputing, vol. 302, pp. 66–74, Aug. 2018, doi: 10.1016/j.neucom.2018.04.006.
  • [33] A. Boulkroune, F. Zouari, and A. Boubellouta, ‘Adaptive fuzzy control for practical fixed-time synchronization of fractional-order chaotic systems’, Journal of Vibration and Control, p. 10775463251320258, Feb. 2025, doi: 10.1177/ 10775463251320258.
  • [34] O. Adigun and B. Kosko, ‘Bidirectional Backpropagation’, IEEE Trans. Syst. Man Cybern, Syst., vol. 50, no. 5, pp. 1982–1994, May 2020, doi: 10.1109/TSMC. 2019.2916096.
  • [35] S. Wang, ‘Study on Ranging Algorithm for UWB-based Indoor High Precision Positioning Technology’, in Proceedings of the 5th International Conference on Computer Information and Big Data Applications, Wuhan China: ACM, Apr. 2024, pp. 1168–1171. doi: 10.1145/3671151.3671354.
  • [36] N. Rogel, D. Raphaeli, and O. Bialer, ‘Time of Arrival and Angle of Arrival Estimation Algorithm in Dense Multipath’, IEEE Trans. Signal Process., vol. 69, pp. 5907–5919, 2021, doi: 10.1109/TSP.2021.3121635.
  • [37] F. Alhomayani and M. H. Mahoor, ‘Deep learning methods for fingerprint-based indoor positioning: a review’, Journal of Location Based Services, vol. 14, no. 3, pp. 129–200, Jul. 2020, doi: 10.1080/17489725.2020.1817582.
  • [38] N. Singh, S. Choe, and R. Punmiya, ‘Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview’, IEEE Access, vol. 9, pp. 127150–127174, 2021, doi: 10.1109/ACCESS.2021.3111083.
  • [39] E. Yüksek and A. G. Yüksek, ‘An Innovative Approach to Improve Point Location Detection System with ANFIS using RSSI Signals and Fingerprinting Method’, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 40, no. 1, pp. 92–107, 2024.
  • [40] G. ÇİFÇİ and A. G. YÜKSEK, ‘Kapalı ortamlar için makine öğrenmesi temelli konum algılama yöntemi geliştirilmesi’, Yüksek Lisans Tez, Erciyes Üniversitesi, Erciyes Üniversitesi, 2021.
  • [41] YÜKSEK, Emre and A. G. YÜKSEK, ‘Design of indoor position detection system with machine learning approach’, Yüksek Lisans Tez, Cumhuriyet Üniversitesi, Cumhuriyet Üniversitesi, 2020.
  • [42] A. Yüksek and A. U. Elik, ‘Development of Image Processing Based Line Tracking Systems for Automated Guided Vehicles with ANFIS and Fuzzy Logic’, Cumhuriyet Science Journal, vol. 44, no. 4, pp. 799–815, 2023, doi: 10.17776/csj.1366104.
  • [43] A. Senthilselvi, J. S. Duela, R. Prabavathi, and D. Sara, ‘Performance evaluation of adaptive neuro fuzzy system (ANFIS) over fuzzy inference system (FIS) with optimization algorithm in de-noising of images from salt and pepper noise’, J Ambient Intell Human Comput, Mar. 2021, doi: 10.1007/s12652-021-03024-z.
  • [44] D. Chicco, M. J. Warrens, and G. Jurman, ‘The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation’, PeerJ Computer Science, vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.
  • [45] T. Chai and R. R. Draxler, ‘Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature’, Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, Jun. 2014, doi: 10.5194/gmd-7-1247-2014.
  • [46] C. Willmott and K. Matsuura, ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Clim. Res., vol. 30, pp. 79–82, 2005, doi: 10.3354/cr030079.
  • [47] Y.-T. Chen, Y.-C. Jhang, and R.-H. Liang, ‘A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems’, Solar Energy, vol. 126, pp. 53–63, Mar. 2016, doi: 10.1016/j.solener.2016.01.007.
  • [48] Zhi Liu and Han-Xiong Li, ‘A probabilistic fuzzy logic system for modeling and control’, IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848–859, Dec. 2005, doi: 10.1109/TFUZZ. 2005.859326.
  • [49] S. Roychowdhury and W. Pedrycz, ‘A survey of defuzzification strategies’, Int. J. Intell. Syst., vol. 16, no. 6, pp. 679–695, Jun. 2001, doi: 10.1002/int.1030.
  • [50] A. Ruiz-Gonzalez, J.-R. Heredia-Larrubia, M. J. Meco-Gutierrez, and F.-M. Perez-Hidalgo, ‘Pulse-Width Modulation Technique With Harmonic Injection in the Modulating Wave and Discontinuous Frequency Modulation for the Carrier Wave for Multilevel Inverters: An Application to the Reduction of Acoustic Noise in Induction Motors’, IEEE Access, vol. 11, pp. 40579–40590, 2023, doi: 10.1109/ ACCESS.2023.3269593.

ANFIS-Driven Optimization of Indoor Navigation Systems for Automated Guided Vehicles Utilizing UWB Signals

Yıl 2025, Cilt: 3 Sayı: 1, 38 - 54, 30.06.2025

Öz

This paper chronicles the fusion of the Adaptive Neural Fuzzy Inference System (ANFIS) and Ultra Wideband (UWB) technology for navigation system optimization in Indoor Autonomous Guided Vehicles (AGVs). In the Industry 4.0 era, the significance of accurate, effective and flexible AGV systems cannot be overemphasized in the industrial applications of today. UWB has centimetre-level location accuracy because of its low power consumption and large bandwidth, and is therefore very suitable for challenging indoor environments. In response to the challenge of high installation costs and environmental sensitivity, the ANFIS model is utilized to integrate the learning ability of artificial neural networks with the inference ability of fuzzy logic in order to increase the accuracy and effectiveness of UWB signal data processing. The real-time adaptive navigation of the system is also supported by dynamically adjusting the motor control according to the vehicle position using Pulse Width Modulation (PWM). The approach enables AGVs to adapt to environmental changes in a flexible manner, improving their performance in dynamic industrial environments. Future work can involve the investigation of UWB integration with other sensors or sensor technologies or application in cluster robotics to enable coordination and navigation in dynamic environments to be improved.

Kaynakça

  • [1] M. De Ryck, M. Versteyhe, and F. Debrouwere, ‘Automated guided vehicle systems, state-of-the-art control algorithms and techniques’, Journal of Manufacturing Systems, vol. 54, pp. 152–173, Jan. 2020, doi: 10.1016/j.jmsy.2019.12.002.
  • [2] R. Cupek et al., ‘Autonomous Guided Vehicles for Smart Industries – The State-of-the-Art and Research Challenges’, in Computational Science – ICCS 2020, vol. 12141, V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira, Eds., in Lecture Notes in Computer Science, vol. 12141. , Cham: Springer International Publishing, 2020, pp. 330–343. doi: 10.1007/978-3-030-50426-7_25.
  • [3] L. Liu et al., ‘Computing Systems for Autonomous Driving: State of the Art and Challenges’, IEEE Internet Things J., vol. 8, no. 8, pp. 6469–6486, Apr. 2021, doi: 10.1109/ JIOT.2020.3043716.
  • [4] Military Equipment and Technologies Research Agency - In Flight Test Research and Innovation Center, Craiova, Romania, D. Țigăniuc, and P. Negrea, ‘INDOOR NAVIGATION: NECESSITY, MECHANISMS AND EVOLUTION’, AFASES 2023, vol. 24, pp. 175–184, Jul. 2023, doi: 10.19062/2247-3173.2023.24.22.
  • [5] D. Feng, C. Wang, C. He, Y. Zhuang, and X.-G. Xia, ‘Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation’, IEEE Internet Things J., vol. 7, no. 4, pp. 3133–3146, Apr. 2020, doi: 10.1109/JIOT. 2020.2965115.
  • [6] M. Alhafnawi et al., ‘A Survey of Indoor and Outdoor UAV-Based Target Tracking Systems: Current Status, Challenges, Technologies, and Future Directions’, IEEE Access, vol. 11, pp. 68324–68339, 2023, doi: 10.1109/ACCESS.2023.3292 302.
  • [7] S. M. Asaad and H. S. Maghdid, ‘A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges and Future Perspectives’, Computer Networks, vol. 212, p. 109041, Jul. 2022, doi: 10.1016/j.comnet.2022. 109041.
  • [8] J.-S. R. Jang, ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, Jun. 1993, doi: 10.1109/21.256541.
  • [9] R. Qamar and B. Ali Zardari, ‘Artificial Neural Networks: An Overview’, Mesopotamian Journal of Computer Science, pp. 130–139, Aug. 2023, doi: 10.58496/MJCSC/2023/015.
  • [10] C. A. Reyes-García and A. A. Torres-García, ‘Fuzzy logic and fuzzy systems’, in Biosignal Processing and Classification Using Computational Learning and Intelligence, Elsevier, 2022, pp. 153–176. doi: 10.1016/B978-0-12-820125-1.00020-8.
  • [11] S. Chopra, G. Dhiman, A. Sharma, M. Shabaz, P. Shukla, and M. Arora, ‘[Retracted] Taxonomy of Adaptive Neuro‐Fuzzy Inference System in Modern Engineering Sciences’, Computational Intelligence and Neuroscience, vol. 2021, no. 1, p. 6455592, Jan. 2021, doi: 10.1155/2021/6455592.
  • [12] S. Pan, X. Xu, L. Zhang, and Y. Yao, ‘A Novel SINS/USBL Tightly Integrated Navigation Strategy Based on Improved ANFIS’, IEEE Sensors J., vol. 22, no. 10, pp. 9763–9777, May 2022, doi: 10.1109/JSEN.2022.3167394.
  • [13] D. Deliyska, N. Yanev, and M. Trifonova, ‘Methods for developing an indoor navigation system’, E3S Web Conf., vol. 280, p. 04001, 2021, doi: 10.1051/e3sconf/202128004001.
  • [14] W. Jiang, Z. Cao, B. Cai, B. Li, and J. Wang, ‘Indoor and Outdoor Seamless Positioning Method Using UWB Enhanced Multi-Sensor Tightly-Coupled Integration’, IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10633–10645, Oct. 2021, doi: 10.1109/TVT.2021.3110325.
  • [15] W. Zhao, L. Xu, B. Qi, J. Hu, T. Wang, and T. Runge, ‘Vivid: Augmenting Vision-Based Indoor Navigation System With Edge Computing’, IEEE Access, vol. 8, pp. 42909–42923, 2020, doi: 10.1109/ACCESS.2020.2978123.
  • [16] C. Gentner, M. Ulmschneider, I. Kuehner, and A. Dammann, ‘WiFi-RTT Indoor Positioning’, in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA: IEEE, Apr. 2020, pp. 1029–1035. doi: 10.1109/PLANS46316.2020.9110232.
  • [17] Jayahariprabhu. M, ‘Development of an Adaptive Neuro-Fuzzy System to Navigate the AGV’s’, in 2024 2nd International Conference on Disruptive Technologies (ICDT), Greater Noida, India: IEEE, Mar. 2024, pp. 1103–1108. doi: 10.1109/ICDT61202.2024.10488944.
  • [18] M. K. Singh, D. R. Parhi, and J. K. Pothal, ‘ANFIS Approach for Navigation of Mobile Robots’, in 2009 International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam, Kerala, India: IEEE, 2009, pp. 727–731. doi: 10.1109/ART Com.2009.119.
  • [19] D. R. Parhi and M. K. Singh, ‘Navigational path analysis of mobile robots using an adaptive neuro-fuzzy inference system controller in a dynamic environment’, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 224, no. 6, pp. 1369–1381, Jun. 2010, doi: 10.1243/09544062JMES1751.
  • [20] B. Van Herbruggen et al., ‘Wi-PoS: A Low-Cost, Open Source Ultra-Wideband (UWB) Hardware Platform with Long Range Sub-GHz Backbone’, Sensors, vol. 19, no. 7, p. 1548, Mar. 2019, doi: 10.3390/s19071548.
  • [21] R. Kshetrimayum, ‘An introduction to UWB communication systems’, IEEE Potentials, vol. 28, no. 2, pp. 9–13, Mar. 2009, doi: 10.1109/MPOT.2009.931847.
  • [22] M. M. Soliman, M. Alkaeed, Md. J. A. Pervez, I. A. Rafi, M. M. Hasan Mahfuz, and A. Musa, ‘A Comb Shape Slot UWB Antenna with Controllable Triple Band Rejection Features for Wimax/Wlan/5G/Satellite Applications’, in 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia: IEEE, Sep. 2020, pp. 362–367. doi: 10.1109/SCOReD50371.2020.9251006.
  • [23] G. Tiberi and M. Ghavami, ‘Ultra-Wideband (UWB) Systems in Biomedical Sensing’, Sensors, vol. 22, no. 12, p. 4403, Jun. 2022, doi: 10.3390/s22124403.
  • [24] S. P.S., S. Vijay, and S. M, ‘Ultra-Wideband Technology: Standards, Characteristics, Applications’, HELIX, vol. 10, no. 4, pp. 59–65, Aug. 2020, doi: 10.29042/2020-10-4-59-65.
  • [25] G. Carfano, H. Murguia, P. Gudem, and P. Mercier, ‘Impact of FR1 5G NR Jammers on UWB Indoor Position Location Systems’, in 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy: IEEE, Sep. 2019, pp. 1–8. doi: 10.1109/IPIN.2019.8911753.
  • [26] C. E. Shannon, ‘A Mathematical Theory of Communication’, Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.
  • [27] J.-S. R. Jang, ‘ANFIS: adaptive-network-based fuzzy inference system’, IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, Jun. 1993, doi: 10.1109/21.256541.
  • [28] A. G. Yüksek, H. Arslan, O. Kaynar, E. Deli̇Baş, and A. Şeki̇R, ‘Comparison of the Effects of Different Dimensional Reduction Algorithms on the Training Performance of Anfis (Adaptive Neuro-Fuzzy Inference System) Model’, Cumhuriyet Science Journal, pp. 716–730, Dec. 2017, doi: 10.17776/csj.347653.
  • [29] S. Chopra, G. Dhiman, A. Sharma, M. Shabaz, P. Shukla, and M. Arora, ‘[Retracted] Taxonomy of Adaptive Neuro‐Fuzzy Inference System in Modern Engineering Sciences’, Computational Intelligence and Neuroscience, vol. 2021, no. 1, p. 6455592, Jan. 2021, doi: 10.1155/2021/6455592.
  • [30] B. Ruprecht et al., ‘Possibilistic Clustering Enabled Neuro Fuzzy Logic’, in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, United Kingdom: IEEE, Jul. 2020, pp. 1–8. doi: 10.1109/FUZZ48607.2020.9177593.
  • [31] Y. Türkay and A. G. Yüksek, ‘Investigating the Potential of an ANFIS-Based Maximum Power Point Tracking Controller for Solar Photovoltaic Systems’, IEEE Access, vol. 13, pp. 41768–41784, 2025, doi: 10.1109/ACCESS. 2025.3547954.
  • [32] B. Haznedar and A. Kalinli, ‘Training ANFIS structure using simulated annealing algorithm for dynamic systems identification’, Neurocomputing, vol. 302, pp. 66–74, Aug. 2018, doi: 10.1016/j.neucom.2018.04.006.
  • [33] A. Boulkroune, F. Zouari, and A. Boubellouta, ‘Adaptive fuzzy control for practical fixed-time synchronization of fractional-order chaotic systems’, Journal of Vibration and Control, p. 10775463251320258, Feb. 2025, doi: 10.1177/ 10775463251320258.
  • [34] O. Adigun and B. Kosko, ‘Bidirectional Backpropagation’, IEEE Trans. Syst. Man Cybern, Syst., vol. 50, no. 5, pp. 1982–1994, May 2020, doi: 10.1109/TSMC. 2019.2916096.
  • [35] S. Wang, ‘Study on Ranging Algorithm for UWB-based Indoor High Precision Positioning Technology’, in Proceedings of the 5th International Conference on Computer Information and Big Data Applications, Wuhan China: ACM, Apr. 2024, pp. 1168–1171. doi: 10.1145/3671151.3671354.
  • [36] N. Rogel, D. Raphaeli, and O. Bialer, ‘Time of Arrival and Angle of Arrival Estimation Algorithm in Dense Multipath’, IEEE Trans. Signal Process., vol. 69, pp. 5907–5919, 2021, doi: 10.1109/TSP.2021.3121635.
  • [37] F. Alhomayani and M. H. Mahoor, ‘Deep learning methods for fingerprint-based indoor positioning: a review’, Journal of Location Based Services, vol. 14, no. 3, pp. 129–200, Jul. 2020, doi: 10.1080/17489725.2020.1817582.
  • [38] N. Singh, S. Choe, and R. Punmiya, ‘Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview’, IEEE Access, vol. 9, pp. 127150–127174, 2021, doi: 10.1109/ACCESS.2021.3111083.
  • [39] E. Yüksek and A. G. Yüksek, ‘An Innovative Approach to Improve Point Location Detection System with ANFIS using RSSI Signals and Fingerprinting Method’, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 40, no. 1, pp. 92–107, 2024.
  • [40] G. ÇİFÇİ and A. G. YÜKSEK, ‘Kapalı ortamlar için makine öğrenmesi temelli konum algılama yöntemi geliştirilmesi’, Yüksek Lisans Tez, Erciyes Üniversitesi, Erciyes Üniversitesi, 2021.
  • [41] YÜKSEK, Emre and A. G. YÜKSEK, ‘Design of indoor position detection system with machine learning approach’, Yüksek Lisans Tez, Cumhuriyet Üniversitesi, Cumhuriyet Üniversitesi, 2020.
  • [42] A. Yüksek and A. U. Elik, ‘Development of Image Processing Based Line Tracking Systems for Automated Guided Vehicles with ANFIS and Fuzzy Logic’, Cumhuriyet Science Journal, vol. 44, no. 4, pp. 799–815, 2023, doi: 10.17776/csj.1366104.
  • [43] A. Senthilselvi, J. S. Duela, R. Prabavathi, and D. Sara, ‘Performance evaluation of adaptive neuro fuzzy system (ANFIS) over fuzzy inference system (FIS) with optimization algorithm in de-noising of images from salt and pepper noise’, J Ambient Intell Human Comput, Mar. 2021, doi: 10.1007/s12652-021-03024-z.
  • [44] D. Chicco, M. J. Warrens, and G. Jurman, ‘The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation’, PeerJ Computer Science, vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.
  • [45] T. Chai and R. R. Draxler, ‘Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature’, Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, Jun. 2014, doi: 10.5194/gmd-7-1247-2014.
  • [46] C. Willmott and K. Matsuura, ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Clim. Res., vol. 30, pp. 79–82, 2005, doi: 10.3354/cr030079.
  • [47] Y.-T. Chen, Y.-C. Jhang, and R.-H. Liang, ‘A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems’, Solar Energy, vol. 126, pp. 53–63, Mar. 2016, doi: 10.1016/j.solener.2016.01.007.
  • [48] Zhi Liu and Han-Xiong Li, ‘A probabilistic fuzzy logic system for modeling and control’, IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848–859, Dec. 2005, doi: 10.1109/TFUZZ. 2005.859326.
  • [49] S. Roychowdhury and W. Pedrycz, ‘A survey of defuzzification strategies’, Int. J. Intell. Syst., vol. 16, no. 6, pp. 679–695, Jun. 2001, doi: 10.1002/int.1030.
  • [50] A. Ruiz-Gonzalez, J.-R. Heredia-Larrubia, M. J. Meco-Gutierrez, and F.-M. Perez-Hidalgo, ‘Pulse-Width Modulation Technique With Harmonic Injection in the Modulating Wave and Discontinuous Frequency Modulation for the Carrier Wave for Multilevel Inverters: An Application to the Reduction of Acoustic Noise in Induction Motors’, IEEE Access, vol. 11, pp. 40579–40590, 2023, doi: 10.1109/ ACCESS.2023.3269593.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veri Mühendisliği ve Veri Bilimi
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Gürkan Yüksek 0000-0001-7709-6360

Ahmet Utku Elik 0009-0009-0298-9944

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 20 Nisan 2025
Kabul Tarihi 5 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE A. G. Yüksek ve A. U. Elik, “ANFIS-Driven Optimization of Indoor Navigation Systems for Automated Guided Vehicles Utilizing UWB Signals”, CÜMFAD, c. 3, sy. 1, ss. 38–54, 2025.