Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY

Yıl 2012, Cilt 33, Sayı 2, 32 - 45, 21.02.2013

Öz

In this present work, we continue studying the estimation of Bernstein-Walsh type for algebraic polynomials in the regions with quasiconformal boundary.

Kaynakça

  • Abdullayev F.G., Dissertation (Ph.D.), Donetsk, 1986, 120 p.
  • Abdullayev F.G., Uniform Convergence of Generalized Bieberbach Polynomials in Re- gions with non-zero angles, Acta Mathematica Hungarica, 1997, 77, 3, 223-246.
  • Abdullayev F.G., On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., 2001, Vol.53, No:12, pp.1934-1948.
  • Abdullayev F.G., The properties of the orthogonal polynomials with weight having singulerity on the boundary contour, J. of Comp. Anal. and Appl. , 2004, Vol.6, No: 1, pp. 43-59.
  • Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand (Prinston, NJ, 1966).
  • Andrievskii V.V., Constructive characterization of the harmonic functions in domains with quasiconformal boundary, In: Quasiconformal continuation and Approximation by function in the set of the complex plane. Kiev, 1985 [in Russian]
  • Andrievskii V.V., Belyi V.I.& Dzyadyk V.K, Conformal invariants in constructive theory of functions of complex plane. Atlanta:World Federation Publ.Com., 1995.
  • Lehto O., Virtanen K.I., Quasiconformal Mapping in the Plane, Springer Verlag, Berlin, 1973.
  • Rickman S., Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., 1966, 395 , 30 p.
  • Stylianopoulos N., Fine asymptotics for Bergman orthogonal polynomials over do- mains with corners, CMFT 2009, Ankara, June 2009.
  • Hille E., Szeg¨o G., Tamarkin J.D., On some generalization of a theorem of A.Markoff , Duke Math., 1937, 3, p. 729-739.
  • Walsh J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, AMS,1960.

ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY

Yıl 2012, Cilt 33, Sayı 2, 32 - 45, 21.02.2013

Öz

Kaynakça

  • Abdullayev F.G., Dissertation (Ph.D.), Donetsk, 1986, 120 p.
  • Abdullayev F.G., Uniform Convergence of Generalized Bieberbach Polynomials in Re- gions with non-zero angles, Acta Mathematica Hungarica, 1997, 77, 3, 223-246.
  • Abdullayev F.G., On the some properties of the orthogonal polynomials over the region of the complex plane (Part III), Ukr.Math.J., 2001, Vol.53, No:12, pp.1934-1948.
  • Abdullayev F.G., The properties of the orthogonal polynomials with weight having singulerity on the boundary contour, J. of Comp. Anal. and Appl. , 2004, Vol.6, No: 1, pp. 43-59.
  • Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand (Prinston, NJ, 1966).
  • Andrievskii V.V., Constructive characterization of the harmonic functions in domains with quasiconformal boundary, In: Quasiconformal continuation and Approximation by function in the set of the complex plane. Kiev, 1985 [in Russian]
  • Andrievskii V.V., Belyi V.I.& Dzyadyk V.K, Conformal invariants in constructive theory of functions of complex plane. Atlanta:World Federation Publ.Com., 1995.
  • Lehto O., Virtanen K.I., Quasiconformal Mapping in the Plane, Springer Verlag, Berlin, 1973.
  • Rickman S., Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., 1966, 395 , 30 p.
  • Stylianopoulos N., Fine asymptotics for Bergman orthogonal polynomials over do- mains with corners, CMFT 2009, Ankara, June 2009.
  • Hille E., Szeg¨o G., Tamarkin J.D., On some generalization of a theorem of A.Markoff , Duke Math., 1937, 3, p. 729-739.
  • Walsh J.L., Interpolation and Approximation by Rational Functions in the Complex Domain, AMS,1960.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Editöriyal
Yazarlar

F.g. ABDULLAYEV


N.d. ARAL Bu kişi benim

Yayımlanma Tarihi 21 Şubat 2013
Yayınlandığı Sayı Yıl 2012, Cilt 33, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { cumuscij57949, journal = {Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi}, issn = {1300-1949}, eissn = {1300-1949}, address = {}, publisher = {Sivas Cumhuriyet Üniversitesi}, year = {2013}, volume = {33}, pages = {32 - 45}, doi = {}, title = {ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY}, key = {cite}, author = {Abdullayev, F.g. and Aral, N.d.} }
APA Abdullayev, F. & Aral, N. (2013). ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY . Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi , 33 (2) , 32-45 . Retrieved from https://dergipark.org.tr/tr/pub/cumuscij/issue/4325/57949
MLA Abdullayev, F. , Aral, N. "ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY" . Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33 (2013 ): 32-45 <https://dergipark.org.tr/tr/pub/cumuscij/issue/4325/57949>
Chicago Abdullayev, F. , Aral, N. "ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY". Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33 (2013 ): 32-45
RIS TY - JOUR T1 - ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY AU - F.g. Abdullayev , N.d. Aral Y1 - 2013 PY - 2013 N1 - DO - T2 - Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 32 EP - 45 VL - 33 IS - 2 SN - 1300-1949-1300-1949 M3 - UR - Y2 - 2022 ER -
EndNote %0 Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY %A F.g. Abdullayev , N.d. Aral %T ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY %D 2013 %J Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi %P 1300-1949-1300-1949 %V 33 %N 2 %R %U
ISNAD Abdullayev, F.g. , Aral, N.d. . "ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY". Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33 / 2 (Şubat 2013): 32-45 .
AMA Abdullayev F. , Aral N. ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013; 33(2): 32-45.
Vancouver Abdullayev F. , Aral N. ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2013; 33(2): 32-45.
IEEE F. Abdullayev ve N. Aral , "ON THE POINTWISE GROWTH OF POLYNOMIALS IN UNBOUNDED REGIONS WITH QUASICONFORMAL BOUNDARY", Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, c. 33, sayı. 2, ss. 32-45, Şub. 2013