Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Blast-Induced Ground Vibrations, Air Overpressure, and Slope Stability in a Quarry: A Case Study

Yıl 2025, Cilt: 11 Sayı: 2, 557 - 571, 27.07.2025
https://doi.org/10.21324/dacd.1698643

Öz

This study investigates the environmental impacts and slope stability conditions associated with blasting activities conducted at a quarry located in Araklı district, Trabzon province, Türkiye. Ground vibration and air overpressure data from five separate blasts were recorded using an Instantel Micromate seismograph during field investigations. The collected data were analyzed and compared against the regulatory threshold limits specified in the updated 2022 Environmental Noise Control Regulation (ÇGKY) for mining and quarrying operations. Furthermore, comparative evaluations were made with the former Turkish standard, the USBM RI 8507 criteria from the United States, and the DIN 4150-3 standard used in Germany. The results show that vibration and air shock levels recorded from each blast remained within the permissible limits defined by all referenced standards. Field observations further confirm that the blasts did not induce structural damage in nearby residential buildings. Comparative analysis revealed that USBM RI 8507 and DIN 4150-3 standards offer more conservative protection thresholds than the current Turkish regulation. In addition, numerical slope stability analyses were conducted for the proposed quarry bench geometry under both static and dynamic (seismic) loading conditions. The calculated Safety Factor (SRF) exceeded 1.5, indicating that the slope is stable and not expected to be adversely affected by planned blasting operations within the quarry boundaries. Overall, this study provides a representative case for the systematic and comparative assessment of the environmental and geotechnical impacts of blasting operations in open-pit quarries, offering valuable insights for Environmental Impact Assessment (EIA) processes in similar projects.

Kaynakça

  • Blair, D. P. (1990, August 26–31). Some problems associated with standard charge weight vibration scaling laws [Symposium presentation]. 3rd International Symposium on Fragmentation by Blasting, Brisbane Queensland, Australia.
  • Feher, J., Cambal, J., Pandula, B., Kondela, J., Sofranko, M., Mudarri, T., & Buchla, I. (2021). Research of the technical seismicity due to blasting works in quarries and their impact on the environment and population. Applied Sciences, 11, Article 2118. https://doi.org/10.3390/app11052118
  • Fu, B., Ji, H., Pei, J., & Wei, J. (2024). Numerical computation-based analysis of blasting vibration effects and slope stability in an open-pit quarry. Fire, 7, Article 420. https://doi.org/10.3390/fire7110420
  • German Institute for Standardisation. (1999). DIN 4150-3: Structural vibration – Part 3: Effects of vibration on structures. Beuth Verlag GmbH.
  • Hoek, E. & Marinos, P. (2000). Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and Tunnelling International, Part 1 – November 2000, Part 2 – December 2000. https://www.rocscience.com/assets/resources/learning/hoek/ Predicting-Tunnel-Squeezing-Problems-in-Weak-Heterogeneous-Rock-Masses-2000.pdf
  • Hoek, E., & Bray, J. W. (1981). Rock Slope Engineering (Revised 3rd edition). Institution of Mining and Metallurgy.
  • Hoek, E., Carranza-Torres, C. T., & Corkum, B. (2002, July 7–10). Hoek-Brown failure criterion-2002 edition [Symposium presentation]. 5th North American Rock Mechanics Symposium, Toronto, Canada.
  • Jiang, N., Lyu, G., Wu, T., Zhou, C., Li, H., & Yang, F. (2023). Vibration effect and ocean environmental impact of blasting excavation in a subsea tunnel. Tunnelling and Underground Space Technology, 131, Article 104855. https://doi.org/10.1016/j.tust.2022.104855
  • Jiang, N., Zhou, C., Lu, S., & Zhang, Z. (2017). Propagation and prediction of blasting vibration on slope in an open pit during underground mining. Tunnelling and Underground Space Technology, 70, 409–421. https://doi.org/10.1016/j.tust.2017.09.005
  • Jug, J., & Grabar, K. (2020). Methods for reducing the environmental impact of rock mass excavation. Environmental Engineering – EnvEng-IO, 7(1), 29–38.
  • Kahriman, A., Özer, U., Aksoy, M., Karadoğan, A., & Tuncer, G. (2006). Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. Environmental Geology, 50(7), 1015–1023. https://doi.org/10.1007/s00254-006-0274-5
  • Khandelwal, M., & Singh, T. N. (2006). Prediction of blast induced ground vibrations and frequency in opencast mine—a neural network approach. Journal of Sound and Vibration, 289, 711–725. https://doi.org/10.1016/j.jsv.2005.02.044
  • Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences, 46, 1214–1222.
  • Khan, M. F. H., Hossain, M. J., Ahmed, M. T., Monir, M. U., Rahman, M. A., Sweety, T. S., Akash, F. A., & Shovon, S. M. (2025). Ground vibration effect evaluation due to blasting operations. Heliyon, 11(2), Article e41759. https://doi.org/10.1016/j.heliyon.2025.e41759
  • Konya, C. J., & Walter, E. J. (1990). Surface blast design. Prentice Hall.
  • Kuzu, C. (2008). The mitigation of the vibration effects caused by tunnel blasts in urban areas: a case study in Istanbul. Environmental Geology, 54, 1075–1080. https://doi.org/10.1007/s00254-007-0875-7
  • Marcuson, W. F., & Franklin, A. G. (1983). Seismic design, analysis and remedial measures to improve the stability of existing earth dams - Corps of Engineers approach. In T.R. Howard (Ed.), Seismic Design of Embankments and Caverns. ASCE.
  • Mesec, J., Težak, D., & Jug, J. (2018). Reducing the adverse effects of blasting on the cave ecosystem near the future exploitation field Gradusa. Rudarsko-geološko-naftni zbornik, 33(4), 45–54. https://doi.org/10.17794/rgn.2018.4.4
  • Özer, U. (2008). Environmental impacts of ground vibration induced by blasting at different rock units on the Kadikoy–Kartal metro tunnel. Engineering Geology, 100(1–2), 82–90. https://doi.org/10.1016/j.enggeo.2008.03.006
  • Rocscience. (2024a). RS2 finite element analysis for excavations and slopes. Rocscience Inc., Toronto, Ontario, Canada. https://www.rocscience.com/help/rs2/tutorials
  • Rocscience. (2024b). RSData Strength and Stress Analysis Software. Rocscience Inc., Toronto, Ontario, Canada. https://www.rocscience.com/software/rsdata
  • Singh, P. K., Vogt, W., Singh, R. B., Singh, M. M., & Singh, D. P. (1997). Response of surface structures to rock blasting. Mineral Resource Engineering, 6(4), 185–194. https://doi.org/10.1142/S0950609897000176
  • Singh, P., & Jayanthu, S. (2024). Pseudo-static and dynamic analysis of mine rock slope under the influence of production blasting. Mining, Metallurgy & Exploration, 41, 3197–3209. https://doi.org/10.1007/s42461-024-01112-0
  • Singh, P. K., Roy, P. P. & Singh, R. B. (2007). Ground vibration assessment under varying circumstances in a limestone quarry in India. Environmental Monitoring and Assessment, 121(1–3), 121–123.
  • Siskind, D. E., Stagg, M. S., Kopp, J. W., & Dowding, C. H. (1980). Structure response and damage produced by ground vibration from surface mine blasting (Report of Investigations 8507). U.S. Bureau of Mines, Washington, D.C.
  • Su, H., & Ma, S. (2022). Study on the stability of high and steep slopes under deep bench blasting vibration in open-pit mines. Frontiers in Earth Science, 10, Article 990012. https://doi.org/10.3389/feart.2022.990012
  • Taiwo, B. O., Yewuhalashet, F., Ogunyemi, O. B., Babatuyi, V. A., Okobe, E. I., & Orhu, E. A. (2023). Quarry slope stability assessment methods with blast induced effect monitoring in Akoko Edo, Nigeria. Geotechnical and Geological Engineering, 41, 2553–2571. https://doi.org/10.1007/s10706-023-02414-8
  • T.C. Resmi Gazete. (2010). Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği (Resmi Gazete Tarih: 04.06.2010, Sayı: 27601). https://www.resmigazete.gov.tr/eskiler/2010/06/20100604-5.htm
  • T.C. Resmi Gazete. (2022). Çevresel Gürültü Kontrol Yönetmeliği (Resmi Gazete Tarih: 11.06.2022, Sayı: 31863). https://www.resmigazete.gov.tr/eskiler/2022/06/20220611-4.htm
  • Ulusay, R. (2015). The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Springer. https://doi.org/10.1007/978-3-319-07713-0
  • U.S. Bureau of Mines. (1980). Structure response and damage produced by ground vibration from surface mine blasting (RI 8507). U.S. Department of Interior, Bureau of Mines.
  • Venkatesh, H. S. (2005). Influence of total charge in a blast on the intensity of ground vibrations – field experiment and computer simulation. Fragblast, 9(3), 127–138. https://doi.org/10.1080/13855140500332260

Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama

Yıl 2025, Cilt: 11 Sayı: 2, 557 - 571, 27.07.2025
https://doi.org/10.21324/dacd.1698643

Öz

Bu çalışma kapsamında, Trabzon ili Araklı ilçesinde faaliyet gösteren bir taşocağında gerçekleştirilen patlatmalı kazıların çevresel etkileri, kazı sonrası ve sismik yük etkisindeki duraylılığı ve buna ek olarak özellikle en yakın yerleşim yerinde oluşturabileceği titreşim ve hava şoku değerlendirilmiştir. Arazi çalışmaları sürecinde, Instantel Micromate marka sismograf ile beş farklı patlatma sırasında ölçümler alınmış ve veriler analiz edilmiştir. Elde edilen veriler, 2022 yılında yenilenen “Çevresel Gürültü Kontrol Yönetmeliği” (ÇGKY) kapsamında maden ve taş ocakları için belirlenen yeni sınır değerlerle karşılaştırılmış; ayrıca eski Türk standardı, USBM RI 8507 (USA) ve DIN 4150-3 (Alman) standartlarıyla karşılaştırmalı analizi gerçekleştirilmiştir. Yapılan değerlendirmeler sonucunda, ölçülen yer sarsıntısı ve hava şoku düzeylerinin her bir patlatma için ilgili yönetmelik sınırlarının altında kaldığı, arazide yapılan gözlemler sonucunda da en yakın yerleşim alanlarındaki yapılarda yapısal hasara yol açmayacağı belirlenmiştir. Karşılaştırmalı analizler ise yeni Türk standardı ile DIN 4150-3 ve USBM standartlarının daha koruyucu yaklaşımlar sunduğunu göstermiştir. Taş ocağı işletmesi için tasarlanan şev geometrisi kazı sonrası mevcut durumda ve sismik yük etkisinde duraylılık değerlendirmesi yapılmış ve güvenlik sayısının SRF>1.5 olduğu belirlenmiştir. Böylece duraylılık değerlendirmesinde elde edilen güvenlik sayısı ve deformasyonlar, işletme sınırlarında yapılacak patlatmalı kazı işleminden etkilenmeyeceği öngörülmektedir. Bu çalışma, taşocaklarında gerçekleştirilen patlatmalı kazıların çevresel etkilerinin yasal sınırlar çerçevesinde sistematik ve karşılaştırmalı olarak değerlendirilmesi ve ocak duraylılığına yönelik örnek bir uygulama sunmakta olup, benzer projeler için “Çevresel Etki Değerlendirme” (ÇED) süreçlerinde kaynak olarak değerlendirilebilir.

Kaynakça

  • Blair, D. P. (1990, August 26–31). Some problems associated with standard charge weight vibration scaling laws [Symposium presentation]. 3rd International Symposium on Fragmentation by Blasting, Brisbane Queensland, Australia.
  • Feher, J., Cambal, J., Pandula, B., Kondela, J., Sofranko, M., Mudarri, T., & Buchla, I. (2021). Research of the technical seismicity due to blasting works in quarries and their impact on the environment and population. Applied Sciences, 11, Article 2118. https://doi.org/10.3390/app11052118
  • Fu, B., Ji, H., Pei, J., & Wei, J. (2024). Numerical computation-based analysis of blasting vibration effects and slope stability in an open-pit quarry. Fire, 7, Article 420. https://doi.org/10.3390/fire7110420
  • German Institute for Standardisation. (1999). DIN 4150-3: Structural vibration – Part 3: Effects of vibration on structures. Beuth Verlag GmbH.
  • Hoek, E. & Marinos, P. (2000). Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and Tunnelling International, Part 1 – November 2000, Part 2 – December 2000. https://www.rocscience.com/assets/resources/learning/hoek/ Predicting-Tunnel-Squeezing-Problems-in-Weak-Heterogeneous-Rock-Masses-2000.pdf
  • Hoek, E., & Bray, J. W. (1981). Rock Slope Engineering (Revised 3rd edition). Institution of Mining and Metallurgy.
  • Hoek, E., Carranza-Torres, C. T., & Corkum, B. (2002, July 7–10). Hoek-Brown failure criterion-2002 edition [Symposium presentation]. 5th North American Rock Mechanics Symposium, Toronto, Canada.
  • Jiang, N., Lyu, G., Wu, T., Zhou, C., Li, H., & Yang, F. (2023). Vibration effect and ocean environmental impact of blasting excavation in a subsea tunnel. Tunnelling and Underground Space Technology, 131, Article 104855. https://doi.org/10.1016/j.tust.2022.104855
  • Jiang, N., Zhou, C., Lu, S., & Zhang, Z. (2017). Propagation and prediction of blasting vibration on slope in an open pit during underground mining. Tunnelling and Underground Space Technology, 70, 409–421. https://doi.org/10.1016/j.tust.2017.09.005
  • Jug, J., & Grabar, K. (2020). Methods for reducing the environmental impact of rock mass excavation. Environmental Engineering – EnvEng-IO, 7(1), 29–38.
  • Kahriman, A., Özer, U., Aksoy, M., Karadoğan, A., & Tuncer, G. (2006). Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. Environmental Geology, 50(7), 1015–1023. https://doi.org/10.1007/s00254-006-0274-5
  • Khandelwal, M., & Singh, T. N. (2006). Prediction of blast induced ground vibrations and frequency in opencast mine—a neural network approach. Journal of Sound and Vibration, 289, 711–725. https://doi.org/10.1016/j.jsv.2005.02.044
  • Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences, 46, 1214–1222.
  • Khan, M. F. H., Hossain, M. J., Ahmed, M. T., Monir, M. U., Rahman, M. A., Sweety, T. S., Akash, F. A., & Shovon, S. M. (2025). Ground vibration effect evaluation due to blasting operations. Heliyon, 11(2), Article e41759. https://doi.org/10.1016/j.heliyon.2025.e41759
  • Konya, C. J., & Walter, E. J. (1990). Surface blast design. Prentice Hall.
  • Kuzu, C. (2008). The mitigation of the vibration effects caused by tunnel blasts in urban areas: a case study in Istanbul. Environmental Geology, 54, 1075–1080. https://doi.org/10.1007/s00254-007-0875-7
  • Marcuson, W. F., & Franklin, A. G. (1983). Seismic design, analysis and remedial measures to improve the stability of existing earth dams - Corps of Engineers approach. In T.R. Howard (Ed.), Seismic Design of Embankments and Caverns. ASCE.
  • Mesec, J., Težak, D., & Jug, J. (2018). Reducing the adverse effects of blasting on the cave ecosystem near the future exploitation field Gradusa. Rudarsko-geološko-naftni zbornik, 33(4), 45–54. https://doi.org/10.17794/rgn.2018.4.4
  • Özer, U. (2008). Environmental impacts of ground vibration induced by blasting at different rock units on the Kadikoy–Kartal metro tunnel. Engineering Geology, 100(1–2), 82–90. https://doi.org/10.1016/j.enggeo.2008.03.006
  • Rocscience. (2024a). RS2 finite element analysis for excavations and slopes. Rocscience Inc., Toronto, Ontario, Canada. https://www.rocscience.com/help/rs2/tutorials
  • Rocscience. (2024b). RSData Strength and Stress Analysis Software. Rocscience Inc., Toronto, Ontario, Canada. https://www.rocscience.com/software/rsdata
  • Singh, P. K., Vogt, W., Singh, R. B., Singh, M. M., & Singh, D. P. (1997). Response of surface structures to rock blasting. Mineral Resource Engineering, 6(4), 185–194. https://doi.org/10.1142/S0950609897000176
  • Singh, P., & Jayanthu, S. (2024). Pseudo-static and dynamic analysis of mine rock slope under the influence of production blasting. Mining, Metallurgy & Exploration, 41, 3197–3209. https://doi.org/10.1007/s42461-024-01112-0
  • Singh, P. K., Roy, P. P. & Singh, R. B. (2007). Ground vibration assessment under varying circumstances in a limestone quarry in India. Environmental Monitoring and Assessment, 121(1–3), 121–123.
  • Siskind, D. E., Stagg, M. S., Kopp, J. W., & Dowding, C. H. (1980). Structure response and damage produced by ground vibration from surface mine blasting (Report of Investigations 8507). U.S. Bureau of Mines, Washington, D.C.
  • Su, H., & Ma, S. (2022). Study on the stability of high and steep slopes under deep bench blasting vibration in open-pit mines. Frontiers in Earth Science, 10, Article 990012. https://doi.org/10.3389/feart.2022.990012
  • Taiwo, B. O., Yewuhalashet, F., Ogunyemi, O. B., Babatuyi, V. A., Okobe, E. I., & Orhu, E. A. (2023). Quarry slope stability assessment methods with blast induced effect monitoring in Akoko Edo, Nigeria. Geotechnical and Geological Engineering, 41, 2553–2571. https://doi.org/10.1007/s10706-023-02414-8
  • T.C. Resmi Gazete. (2010). Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği (Resmi Gazete Tarih: 04.06.2010, Sayı: 27601). https://www.resmigazete.gov.tr/eskiler/2010/06/20100604-5.htm
  • T.C. Resmi Gazete. (2022). Çevresel Gürültü Kontrol Yönetmeliği (Resmi Gazete Tarih: 11.06.2022, Sayı: 31863). https://www.resmigazete.gov.tr/eskiler/2022/06/20220611-4.htm
  • Ulusay, R. (2015). The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Springer. https://doi.org/10.1007/978-3-319-07713-0
  • U.S. Bureau of Mines. (1980). Structure response and damage produced by ground vibration from surface mine blasting (RI 8507). U.S. Department of Interior, Bureau of Mines.
  • Venkatesh, H. S. (2005). Influence of total charge in a blast on the intensity of ground vibrations – field experiment and computer simulation. Fragblast, 9(3), 127–138. https://doi.org/10.1080/13855140500332260
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel Değerlendirme ve İzleme, Uygulamalı Jeoloji
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Çavuşoğlu 0000-0003-0145-7523

Selçuk Alemdağ 0000-0003-2893-3681

Gönderilme Tarihi 13 Mayıs 2025
Kabul Tarihi 11 Temmuz 2025
Yayımlanma Tarihi 27 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Çavuşoğlu, İ., & Alemdağ, S. (2025). Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama. Doğal Afetler ve Çevre Dergisi, 11(2), 557-571. https://doi.org/10.21324/dacd.1698643
AMA Çavuşoğlu İ, Alemdağ S. Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama. Doğ Afet Çev Derg. Temmuz 2025;11(2):557-571. doi:10.21324/dacd.1698643
Chicago Çavuşoğlu, İbrahim, ve Selçuk Alemdağ. “Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama”. Doğal Afetler ve Çevre Dergisi 11, sy. 2 (Temmuz 2025): 557-71. https://doi.org/10.21324/dacd.1698643.
EndNote Çavuşoğlu İ, Alemdağ S (01 Temmuz 2025) Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama. Doğal Afetler ve Çevre Dergisi 11 2 557–571.
IEEE İ. Çavuşoğlu ve S. Alemdağ, “Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama”, Doğ Afet Çev Derg, c. 11, sy. 2, ss. 557–571, 2025, doi: 10.21324/dacd.1698643.
ISNAD Çavuşoğlu, İbrahim - Alemdağ, Selçuk. “Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama”. Doğal Afetler ve Çevre Dergisi 11/2 (Temmuz2025), 557-571. https://doi.org/10.21324/dacd.1698643.
JAMA Çavuşoğlu İ, Alemdağ S. Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama. Doğ Afet Çev Derg. 2025;11:557–571.
MLA Çavuşoğlu, İbrahim ve Selçuk Alemdağ. “Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama”. Doğal Afetler ve Çevre Dergisi, c. 11, sy. 2, 2025, ss. 557-71, doi:10.21324/dacd.1698643.
Vancouver Çavuşoğlu İ, Alemdağ S. Taş Ocağında Patlatmalı Kazı Kaynaklı Zemin Titreşimleri, Hava Şoku ve Şev Duraylılığının İncelenmesi: Örnek Bir Uygulama. Doğ Afet Çev Derg. 2025;11(2):557-71.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.