Araştırma Makalesi
BibTex RIS Kaynak Göster

Aylık Yağışın Konumsal Dağılımının Modellenmesinde Farklı Enterpolasyon Yöntemlerinin Karşılaştırmalı Analizi

Yıl 2018, Cilt: 4 Sayı: 2, 89 - 104, 08.05.2018
https://doi.org/10.21324/dacd.387061

Öz



Su bütçesi ve hidrolojik modelleme gibi birçok su
kaynakları planlama ve yönetim çalışmaları için noktasal yağış gözlemlerinden
alansal yağışın tahmin edilmesi çok önemlidir. Yağışın konumsal dağılımının
belirlenmesi için deterministik ve jeoistatistik birçok yöntem bulunmaktadır.
Bu çalışmada en yaygın kullanılan uzaklığın tersi ile ağırlıklandırma (IDW), Simple
Kriging (SK) ve Co-Kriging (CK) yöntemleri uygulanmıştır. Akarçay Sinanpaşa ve
Şuhut alt havzalarında, Coğrafi Bilgi Sistemleri (CBS) teknikleri ile yaygın
olarak tercih edilen enterpolasyon yöntemlerinin karşılaştırılması ve aylık
yağış değerlerinin konumsal dağılımının ölçüm yapılmayan alanlarda tahmin
yapılması için modellenmesi çalışmanın ana amacını oluşturmaktadır. Aynı
zamanda istasyon sayısı, havza alanı, karakteristikleri ve yükseklik gibi
ikincil veri kullanımının model performansları üzerindeki etkileri
araştırılmıştır. Deterministik bir yöntem olan IDW ve jeoistatistik yöntemler olan
SK-CK yöntemlerinin çapraz doğrulama tekniği ile performansları test edilerek
karşılaştırılmış ve çalışma alanları için enterpolasyon tekniklerinin
kullanılabilirliği incelenmiştir. IDW, SK ve CK yöntemlerinin çapraz doğrulama
test sonuçlarına göre Sinanpaşa alt havzası için sırasıyla RMSE (karesel
ortalama hata) değerleri 13,76 mm, 9,32 mm ve 8,72 mm iken; Şuhut alt havzası
için 9,43 mm, 7,82 mm ve 7,90 mm'dir. IDW yöntemine kıyasla açık üstünlükleri
olan ve yakın RMSE değerlerine sahip SK-CK yöntemlerine, ek olarak PSE (tahmin
standart hatası) ile belirsizlik analizi uygulanmıştır. Belirsizlik analizi
sonuçlarına göre hem Sinanpaşa hem de Şuhut alt havzaları için SK yöntemi
sırasıyla 10,30 mm ve 8,54 mm PSE değerleriyle, 11,03 mm ve 9,02 mm PSE
değerlerine sahip CK yöntemine az da olsa üstünlük sağlamıştır. Elde edilen
bulgulara göre her üç yönteminde çalışma alanları için kullanılabilir olduğu görülmektedir.
Bu şekilde yağışın konumsal dağılımının belirlenmesinin ölçüm yapılmayan veya
kıt ölçüm yapılan alanlarda birçok su kaynakları mühendisliği çalışmaları için
faydalı olacağı düşünülmektedir.




Kaynakça

  • Adhikary S.K., Muttil N., Yılmaz A.G., (2016), Genetic programming-based ordinary kriging for spatial interpolation of rainfall, J. Hydrol. Eng., 21(2): 04015062, 1-14.
  • Aly A., Pathak C., Teegavarapu R.S.V., Ahlquist J., Fuelberg H., (2009), Evaluation of improvised spatial interpolation methods for infilling missing precipitation records, World Environmental and Water Resources Congress Book: Great Rivers, Missouri, USA, 5914-5923.
  • Aslantas P., Akyurek Z., Heuvelink G., (2016), Interpolation of precipitation in space and time, Dicle University J. of Engineering, 7 (2), 257-270. (In Turkish)
  • Aydin O., Cicek I., (2013), Spatial distribution of precipitation in Aegean Region, Turkish J. of Geographical Sciences, 11 (2), 101-120. (In Turkish)
  • Aydin O., Raja N.B., (2016), Deterministic and stochastic methods to analyse the spatial distribution of precipitation: The case of Mauritius, East Africa, Turkish J. of Geographical Sciences, 14 (1), 1-14. (In Turkish)
  • Ball J.E., Luk K.C., (1998), Modeling spatial variability of rainfall over a catchment, J. of Hydrol. Eng., 3 (2), 122-130.
  • Biondi F., Myers D.E., Avery C.C., (1994), Geostatistically modeling stem size and increment in an old-growth forest, Can. J. For. Res., 24:1354-68. doi:10.1139/x94-176.
  • Bostan A.P., Akyurek Z., (2007), Spatial modelling of the mean annual precipitation of Turkey by using secondary variables, UCTEA National GIS Congress, Trabzon, Turkey. (In Turkish)
  • Bostan P.A., Heuvelink G.B.M., Akyurek S.Z., (2012), Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey, Int. J. of Applied Earth Observation and Geoinformation, 19, 115-126.
  • Carrera-Hernandez J.J., Gaskin S.J., (2007), Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico, J. of Hydrology, 336 (3-4), 231-249.
  • Chambers R.L., Yarus J.M., Hird K.B., (2000), Petroleum geostatistics for the nongeostatistician-Part 1, The Leading Edge, 19 (5), 474-479.
  • Citakoglu H., Cetin M., Cobaner M., Haktanir T., (2017), Modeling of seasonal precipitation with geostatistical techniques and its estimation at un-gauged locations, IMO Teknik Dergi, 469, 7725-7745. (In Turkish)
  • Deutsch C.V., Journel, A. G., (1998), GSLIB: Geostatistical software library and user’s guide, Second Edition, Oxford University Press, Oxford, UK.
  • Di Piazza A., Lo Conti F., Noto L.V., Viola F., La Loggia G., (2011), Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy, Int. J. of Applied Earth Observation and Geoinformation, 13, 396-408.
  • ESRI, (2001), Using ArcGIS geostatistical analyst, ESRI Press, Redlands, CA.
  • Gonga-Saholiariliva N., Neppel L., Chevallier P., Delclaux F., Savean M., (2016), Geostatistical estimation of daily monsoon precipitation at fine spatial scale: Koshi river basin, J. of Hydrol. Eng., 21(9): 05016017, 1-15.
  • Goovaerts P., (1998), Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties, Biol. Fert. Soils., 27, 315–334.
  • Goovaerts P., (2000), Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, J. Hydrol., 228, 113–129.
  • Icaga Y., Tas E., Kilit M., (2016), Flood inundation mapping by GIS and a hydraulic model (HEC RAS): A case study of Akarcay Bolvadin subbasin, in Turkey, Acta Geobalcanica, 2 (2), 111-118.
  • Isaaks E. H., Srivastava R.M., (1989), An introduction to applied geostatistics, Oxford University Press, New York, 351-368.
  • Jin Q., Zhang J., Shi M., Huang J., (2016), Estimating Loess Plateau average annual precipitation with multiple lineer regression kriging and geographically weighted regression kriging, Water, 8, 266, 1-20.
  • Journel A.G., (1986), Geostatistics: Models and tools for the earth sciences, Math. Geol., 18 (1), 119-140.
  • Krige D.G., (1951), A statistical approach to some mine valuations and allied problems at the Witwatersrand, MSc Thesis, University of Witwatersrand, Johannesburg, South Africa.
  • Nash J.E., Sutcliffe J.V., (1970). River flow forecasting through conceptual models. Part I-A discussion of principles, J. of Hydrology, 10 (3), 282-290.
  • Putthividhya A., Amto A., (2016), Spatial precipitation mapping based on geostatistical analysis from co-located elevation, humidity and temperature data in the northern Chao Phraya river basin, World Environmental and Water Resources Congress Book, Florida, USA, 518-528.
  • Saghafian B., Bondarabadi S.R., (2008), Validity of regional rainfall spatial distribution methods in mountainous areas, J. of Hydrol. Eng., 13 (7), 531-540.
  • Shi H., Li T., Wei J., Fu W., Wang G., (2016), Spatial and temporal characteristics of precipitation over the Three-River headwaters region during 1961-2014, J. of Hydrology: Regional Studies 6, 52-65.
  • Turkoglu N., Aydin O., Duman N., Cicek I., (2016), Comparison of various spatial interpolation methods for precipitation in Turkey, J. of Human Sciences, 13 (3), 5636-5659. (In Turkish)
  • URL-1, (2018), Kriging and cokriging, PetroWiki, Society of Petroleum Engineers, http://petrowiki.org/Kriging_and_cokriging, [Access 20 March 2018].
  • Watson D.F., Philip G.M., (1985), A refinement of inverse distance weighted interpolation, Geo-Processing, 2, 315-327.

Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation

Yıl 2018, Cilt: 4 Sayı: 2, 89 - 104, 08.05.2018
https://doi.org/10.21324/dacd.387061

Öz

For many water resources planning and management studies such as water budget and hydrological modeling, it is very important to estimate areal precipitation from point observation stations. There are many deterministic and geostatistical methods for determining the spatial distribution of precipitation. In this study, the most widely used methods, inverse distance weighting (IDW), Simple Kriging (SK) and Co-Kriging (CK) are applied. It is the main objective of the study that Geographic Information Systems (GIS) techniques are used to compare widely preferred interpolation methods and to model the spatial distribution of monthly precipitation values for prediction in ungauged areas in Akarcay Sinanpasa and Suhut sub-basins, Turkey. At the same time, the effects of number of stations, basin area, characteristics and secondary data usage such as elevation on model performance are investigated. The IDW, a deterministic method and the SK-CK, geostatistical methods are compared with each other by cross validation technique and the applicability of the interpolation techniques for the study areas is analyzed. According to the cross validation test results of IDW, SK and CK methods, the mean RMSE (root mean square error) values of Sinanpasa sub-basin are respectively 13,76 mm, 9,32 mm and 8,72 mm while these values are 9,43 mm, 7,82 mm and 7,90 mm for Suhut sub-basin. Then, uncertainty analysis by means of PSE (prediction standard error) is applied to SK-CK methods with clear advantages over the IDW method and with the close RMSE values. In consideration of the results of the uncertainty analysis, the SK method with the mean PSE values 10,30 mm and 8,54 mm has a little superiority to the CK method whose average PSE values are 11,03 mm and 9,02 mm for both Sinanpasa and Suhut sub-basins, respectively. When the findings are evaluated, it can be seen that all three methods can be used for the study areas. The determination of the spatial distribution of precipitation in this way is considered to be beneficial for many water resources engineering studies in areas of ungauged/sparsely gauged.




Kaynakça

  • Adhikary S.K., Muttil N., Yılmaz A.G., (2016), Genetic programming-based ordinary kriging for spatial interpolation of rainfall, J. Hydrol. Eng., 21(2): 04015062, 1-14.
  • Aly A., Pathak C., Teegavarapu R.S.V., Ahlquist J., Fuelberg H., (2009), Evaluation of improvised spatial interpolation methods for infilling missing precipitation records, World Environmental and Water Resources Congress Book: Great Rivers, Missouri, USA, 5914-5923.
  • Aslantas P., Akyurek Z., Heuvelink G., (2016), Interpolation of precipitation in space and time, Dicle University J. of Engineering, 7 (2), 257-270. (In Turkish)
  • Aydin O., Cicek I., (2013), Spatial distribution of precipitation in Aegean Region, Turkish J. of Geographical Sciences, 11 (2), 101-120. (In Turkish)
  • Aydin O., Raja N.B., (2016), Deterministic and stochastic methods to analyse the spatial distribution of precipitation: The case of Mauritius, East Africa, Turkish J. of Geographical Sciences, 14 (1), 1-14. (In Turkish)
  • Ball J.E., Luk K.C., (1998), Modeling spatial variability of rainfall over a catchment, J. of Hydrol. Eng., 3 (2), 122-130.
  • Biondi F., Myers D.E., Avery C.C., (1994), Geostatistically modeling stem size and increment in an old-growth forest, Can. J. For. Res., 24:1354-68. doi:10.1139/x94-176.
  • Bostan A.P., Akyurek Z., (2007), Spatial modelling of the mean annual precipitation of Turkey by using secondary variables, UCTEA National GIS Congress, Trabzon, Turkey. (In Turkish)
  • Bostan P.A., Heuvelink G.B.M., Akyurek S.Z., (2012), Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey, Int. J. of Applied Earth Observation and Geoinformation, 19, 115-126.
  • Carrera-Hernandez J.J., Gaskin S.J., (2007), Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico, J. of Hydrology, 336 (3-4), 231-249.
  • Chambers R.L., Yarus J.M., Hird K.B., (2000), Petroleum geostatistics for the nongeostatistician-Part 1, The Leading Edge, 19 (5), 474-479.
  • Citakoglu H., Cetin M., Cobaner M., Haktanir T., (2017), Modeling of seasonal precipitation with geostatistical techniques and its estimation at un-gauged locations, IMO Teknik Dergi, 469, 7725-7745. (In Turkish)
  • Deutsch C.V., Journel, A. G., (1998), GSLIB: Geostatistical software library and user’s guide, Second Edition, Oxford University Press, Oxford, UK.
  • Di Piazza A., Lo Conti F., Noto L.V., Viola F., La Loggia G., (2011), Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy, Int. J. of Applied Earth Observation and Geoinformation, 13, 396-408.
  • ESRI, (2001), Using ArcGIS geostatistical analyst, ESRI Press, Redlands, CA.
  • Gonga-Saholiariliva N., Neppel L., Chevallier P., Delclaux F., Savean M., (2016), Geostatistical estimation of daily monsoon precipitation at fine spatial scale: Koshi river basin, J. of Hydrol. Eng., 21(9): 05016017, 1-15.
  • Goovaerts P., (1998), Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties, Biol. Fert. Soils., 27, 315–334.
  • Goovaerts P., (2000), Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, J. Hydrol., 228, 113–129.
  • Icaga Y., Tas E., Kilit M., (2016), Flood inundation mapping by GIS and a hydraulic model (HEC RAS): A case study of Akarcay Bolvadin subbasin, in Turkey, Acta Geobalcanica, 2 (2), 111-118.
  • Isaaks E. H., Srivastava R.M., (1989), An introduction to applied geostatistics, Oxford University Press, New York, 351-368.
  • Jin Q., Zhang J., Shi M., Huang J., (2016), Estimating Loess Plateau average annual precipitation with multiple lineer regression kriging and geographically weighted regression kriging, Water, 8, 266, 1-20.
  • Journel A.G., (1986), Geostatistics: Models and tools for the earth sciences, Math. Geol., 18 (1), 119-140.
  • Krige D.G., (1951), A statistical approach to some mine valuations and allied problems at the Witwatersrand, MSc Thesis, University of Witwatersrand, Johannesburg, South Africa.
  • Nash J.E., Sutcliffe J.V., (1970). River flow forecasting through conceptual models. Part I-A discussion of principles, J. of Hydrology, 10 (3), 282-290.
  • Putthividhya A., Amto A., (2016), Spatial precipitation mapping based on geostatistical analysis from co-located elevation, humidity and temperature data in the northern Chao Phraya river basin, World Environmental and Water Resources Congress Book, Florida, USA, 518-528.
  • Saghafian B., Bondarabadi S.R., (2008), Validity of regional rainfall spatial distribution methods in mountainous areas, J. of Hydrol. Eng., 13 (7), 531-540.
  • Shi H., Li T., Wei J., Fu W., Wang G., (2016), Spatial and temporal characteristics of precipitation over the Three-River headwaters region during 1961-2014, J. of Hydrology: Regional Studies 6, 52-65.
  • Turkoglu N., Aydin O., Duman N., Cicek I., (2016), Comparison of various spatial interpolation methods for precipitation in Turkey, J. of Human Sciences, 13 (3), 5636-5659. (In Turkish)
  • URL-1, (2018), Kriging and cokriging, PetroWiki, Society of Petroleum Engineers, http://petrowiki.org/Kriging_and_cokriging, [Access 20 March 2018].
  • Watson D.F., Philip G.M., (1985), A refinement of inverse distance weighted interpolation, Geo-Processing, 2, 315-327.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Yılmaz İçağa

Emin Taş

Gönderilme Tarihi 31 Ocak 2018
Kabul Tarihi 4 Mayıs 2018
Yayımlanma Tarihi 8 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 4 Sayı: 2

Kaynak Göster

APA İçağa, Y., & Taş, E. (2018). Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation. Doğal Afetler ve Çevre Dergisi, 4(2), 89-104. https://doi.org/10.21324/dacd.387061
AMA İçağa Y, Taş E. Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation. Doğ Afet Çev Derg. Temmuz 2018;4(2):89-104. doi:10.21324/dacd.387061
Chicago İçağa, Yılmaz, ve Emin Taş. “Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation”. Doğal Afetler ve Çevre Dergisi 4, sy. 2 (Temmuz 2018): 89-104. https://doi.org/10.21324/dacd.387061.
EndNote İçağa Y, Taş E (01 Temmuz 2018) Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation. Doğal Afetler ve Çevre Dergisi 4 2 89–104.
IEEE Y. İçağa ve E. Taş, “Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation”, Doğ Afet Çev Derg, c. 4, sy. 2, ss. 89–104, 2018, doi: 10.21324/dacd.387061.
ISNAD İçağa, Yılmaz - Taş, Emin. “Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation”. Doğal Afetler ve Çevre Dergisi 4/2 (Temmuz2018), 89-104. https://doi.org/10.21324/dacd.387061.
JAMA İçağa Y, Taş E. Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation. Doğ Afet Çev Derg. 2018;4:89–104.
MLA İçağa, Yılmaz ve Emin Taş. “Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation”. Doğal Afetler ve Çevre Dergisi, c. 4, sy. 2, 2018, ss. 89-104, doi:10.21324/dacd.387061.
Vancouver İçağa Y, Taş E. Comparative Analysis of Different Interpolation Methods in Modeling Spatial Distribution of Monthly Precipitation. Doğ Afet Çev Derg. 2018;4(2):89-104.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.