Araştırma Makalesi
BibTex RIS Kaynak Göster

ARAÇLARDA YAN AYNA YERİNE KAMERA KULLANIMININ YAKIT TÜKETİMİNE ETKİSİ

Yıl 2025, Cilt: 5 Sayı: 2, 46 - 56
https://doi.org/10.59732/dae.1678810

Öz

Bu çalışmada yan aynaların yerine kamera sistemlerinin kullanılmasıyla yakıt tasarrufu potansiyelinin araştırılması için sonlu elemanlar yöntemi kullanılmıştır. Drag katsayısı, aerodinamik direncin bir ölçüsü olduğundan, yakıt tasarrufu üzerinde önemli bir etkisi vardır. Yan aynaların yerine kamera sistemlerinin kullanılması, araçların aerodinamik profilini iyileştirebilir ve drag katsayısını azaltabilir. Bu çalışmada bir otomobil modeli üzerinde sonlu elemanlar yöntemi kullanılarak drag katsayısı hesaplanmıştır. İlk olarak, aracın yan aynaları yerine kamera sistemlerinin entegrasyonu simüle edilmiştir. Elde edilen sonuçlar, yan aynaların yerine kamera sistemlerinin kullanılmasının drag katsayısını düşürebileceğini ve bu yüksek hızlarda kamera sistemlerinin daha iyi aerodinamik performans sağladığı tespit edilmiştir. Bu bulgular, yaygınlaştırılması ve yakıt tasarrufunun artırılması için önemli bir bilgi sunmaktadır. Araştırmanın sonuçları gelecekte yapılacak çalışmalar ve otomobil tasarımında aerodinamik iyileştirmeler için rehberlik edebilir. Bu çalışma, yan aynaların yerine kamera sistemlerinin kullanımının yakıt tasarrufu açısından önemli bir potansiyele sahip olduğu ve bu yöntemin otomotiv endüstrisinde daha fazla uygulanması gerektiğini vurgulamaktadır.

Kaynakça

  • European Commission. (2011). A road map for moving to a competitive low-carbon economy in 2050 (COM (2011) 112 final). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0112
  • Fluent Inc. (2006). Fluent 6.3 user’s guide – Chapter 12: Turbulence model theory.
  • Gurunathan, S., Parammasivam, K. M., & Gunasekar, G. (2018). Reduction of aerodynamic drag force for reducing fuel consumption in road vehicle using basebleed. Journal of Applied Fluid Mechanics, 11(6), 1489–1495. https://www.jafmonline.net/article_699.html
  • Hirose, K., Nakagawa, R., Ura, Y., Kawamata, H., Tanaka, H., &Oshima, M. (2015). Application of prediction formulas to aerodynamic drag reduction of door mirrors. SAE Technical Paper, 2015, (No. 2015-01-1528).
  • IEA-ETSAP. (2011). Automotive weight and drag reduction (TechnologyBrief T18) [PDF]. International Energy Agency. Retrieved from https://iea-etsap.org/E-TechDS/PDF/T18_Automotive%20weight%20and%20drag%20reduction%20v2bis.pdf
  • Kopp, S., & Frank, T. (2013). Nutzfahrzeuge. In T. Schütz (Ed.), Hucho – Aerodynamik des Automobils (pp. 651–726). Springer Vieweg. https://link.springer.com/chapter/10.1007/978-3-8348-2316-8_10
  • Lazy Stones. (n.d.). Project 400052: Mercedes-Benz Actros model. Lazy Stones. https://www.lazystones.com/project/400052
  • Nath, D. S., Pujari, P. C., Jain, A., & Rastogi, V. (2021). Drag reduction by application of aerodynamic devices in a race car. Advances in Aerodynamics, 3, Article 4. https://aia.springeropen.com/articles/10.1186/s42774-020-00054-7
  • National Highway Traffic Safety Administration. (2015). Heavy-duty truck fuel efficiency technology study – Report #1 (Report No. 812146). https://www.nhtsa.gov/sites/nhtsa.gov/files/812146-commercialmdhd-truckfuelefficiencytechstudy-v2.pdf
  • National Highway Traffic Safety Administration. (2018). FMVSS 111, Rear Visibility ANPRM [PDF]. Retrievedfromhttps://downloads.regulations.gov/NHTSA-2018-0021-0449/attachment_1.pdf
  • Neuendorf, R. (2023). Kühlungund Durchströmung. In H. Schütz (Ed.), Hucho – Aerodynamik des Automobils (pp. 585–635). Springer Vieweg. https://link.springer.com/chapter/10.1007/978-3-658-35833-4_8
  • Patel, V. C., Rodi, W., & Scheuerer, G. (2002). Turbulence models for near-wall and low Reynolds number flows: A review. AIAA Journal, 22(9), 1308–1319.
  • Sathyabama University. (n.d.). SAU1601 Automotive Aerodynamics [PDF lecture notes]. Retrievedfromhttps://sist.sathyabama.ac.in/sist_coursematerial/uploads/SAU1601.pdf
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson Education.
  • Volkswagen AG. (2014). The XL1 [PDF brochure]. Retrievedfromhttps://autocatalogarchive.com/wp-content/uploads/2019/07/VW-XL1-2014-INT.pdf

THE EFFECT OF USING CAMERAS INSTEAD OF SIDE MIRRORS IN VEHICLES ON FUEL CONSUMPTION

Yıl 2025, Cilt: 5 Sayı: 2, 46 - 56
https://doi.org/10.59732/dae.1678810

Öz

In this study, the finite element method was employed to investigate the fuel-saving potential of replacing side mirrors with camera systems. Since the drag coefficient is a measure of aerodynamic resistance, it has a significant impact on fuel efficiency. Utilizing camera systems instead of conventional side mirrors can enhance the aerodynamic profile of vehicles and reduce the drag coefficient.In this research, the drag coefficient was calculated using the finite element method applied to a car model. Initially, the integration of camera systems in place of side mirrors was simulated. The results indicated that replacing side mirrors with camera systems can lower the drag coefficient and provide improved aerodynamic performance, particularly at high speeds.These findings offer valuable insights that support the wider adoption of camera systems to enhance fuel efficiency. The outcomes of this study may guide future research and inform aerodynamic improvements in vehicle design. This work highlights the significant potential of camera systems as alternatives to side mirrors in achieving fuel savings and emphasizes the need for broader implementation of this approach within the automotive industry.

Kaynakça

  • European Commission. (2011). A road map for moving to a competitive low-carbon economy in 2050 (COM (2011) 112 final). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0112
  • Fluent Inc. (2006). Fluent 6.3 user’s guide – Chapter 12: Turbulence model theory.
  • Gurunathan, S., Parammasivam, K. M., & Gunasekar, G. (2018). Reduction of aerodynamic drag force for reducing fuel consumption in road vehicle using basebleed. Journal of Applied Fluid Mechanics, 11(6), 1489–1495. https://www.jafmonline.net/article_699.html
  • Hirose, K., Nakagawa, R., Ura, Y., Kawamata, H., Tanaka, H., &Oshima, M. (2015). Application of prediction formulas to aerodynamic drag reduction of door mirrors. SAE Technical Paper, 2015, (No. 2015-01-1528).
  • IEA-ETSAP. (2011). Automotive weight and drag reduction (TechnologyBrief T18) [PDF]. International Energy Agency. Retrieved from https://iea-etsap.org/E-TechDS/PDF/T18_Automotive%20weight%20and%20drag%20reduction%20v2bis.pdf
  • Kopp, S., & Frank, T. (2013). Nutzfahrzeuge. In T. Schütz (Ed.), Hucho – Aerodynamik des Automobils (pp. 651–726). Springer Vieweg. https://link.springer.com/chapter/10.1007/978-3-8348-2316-8_10
  • Lazy Stones. (n.d.). Project 400052: Mercedes-Benz Actros model. Lazy Stones. https://www.lazystones.com/project/400052
  • Nath, D. S., Pujari, P. C., Jain, A., & Rastogi, V. (2021). Drag reduction by application of aerodynamic devices in a race car. Advances in Aerodynamics, 3, Article 4. https://aia.springeropen.com/articles/10.1186/s42774-020-00054-7
  • National Highway Traffic Safety Administration. (2015). Heavy-duty truck fuel efficiency technology study – Report #1 (Report No. 812146). https://www.nhtsa.gov/sites/nhtsa.gov/files/812146-commercialmdhd-truckfuelefficiencytechstudy-v2.pdf
  • National Highway Traffic Safety Administration. (2018). FMVSS 111, Rear Visibility ANPRM [PDF]. Retrievedfromhttps://downloads.regulations.gov/NHTSA-2018-0021-0449/attachment_1.pdf
  • Neuendorf, R. (2023). Kühlungund Durchströmung. In H. Schütz (Ed.), Hucho – Aerodynamik des Automobils (pp. 585–635). Springer Vieweg. https://link.springer.com/chapter/10.1007/978-3-658-35833-4_8
  • Patel, V. C., Rodi, W., & Scheuerer, G. (2002). Turbulence models for near-wall and low Reynolds number flows: A review. AIAA Journal, 22(9), 1308–1319.
  • Sathyabama University. (n.d.). SAU1601 Automotive Aerodynamics [PDF lecture notes]. Retrievedfromhttps://sist.sathyabama.ac.in/sist_coursematerial/uploads/SAU1601.pdf
  • Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method (2nd ed.). Pearson Education.
  • Volkswagen AG. (2014). The XL1 [PDF brochure]. Retrievedfromhttps://autocatalogarchive.com/wp-content/uploads/2019/07/VW-XL1-2014-INT.pdf
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Üretim ve Endüstri Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Selim Karaağaç 0009-0001-8637-4243

Ali Bozkurt Bu kişi benim 0009-0001-8779-598X

Burak Kocabay Bu kişi benim 0009-0009-3021-1195

Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 7 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

APA Karaağaç, S., Bozkurt, A., & Kocabay, B. (t.y.). ARAÇLARDA YAN AYNA YERİNE KAMERA KULLANIMININ YAKIT TÜKETİMİNE ETKİSİ. Tasarım Mimarlık ve Mühendislik Dergisi, 5(2), 46-56. https://doi.org/10.59732/dae.1678810