Araştırma Makalesi
BibTex RIS Kaynak Göster

Raylı Sistem Araçlarında Kullanılan Kompozit Malzemelerin Termografik Muayene ile Kontrolü

Yıl 2023, , 186 - 198, 31.01.2023
https://doi.org/10.47072/demiryolu.1202657

Öz

Endüstriyel ihtiyaçlarda artış ve yeni mühendislik malzemelerinin gelişmesiyle birlikte her türlü makine ve araçta teknolojik gelişmeler büyük bir hız kazanmıştır. Raylı sistem teknolojilerinde seyahat sürelerinin azalması amacıyla yüksek hızlı araçların geliştirilmesini sağlamıştır. Bu araçların artan hızı ile yapısal olarak daha dayanıklı malzemelerin araştırılması ortaya çıkmıştır. Metalik malzemeler, özgül dayanım kapasiteleri, şekillendirilebilirlikleri ve yüksek iletkenlikleri nedeniyle raylı sistem uygulamalarında ihtiyaçları karşılamamaktadır. Alternatif olarak kompozit malzemelerin kullanımı bulunmaktadır. Ancak kompozit malzemelerin kullanımını sınırlayan etmenler vardır. Bunlardan biri tahribatsız kontrol metotlarının metalik malzemelere göre zor ve karmaşık olmasıdır. Tahribatsız muayene yöntemlerinden biri olan Termografik (TR) analiz yöntemi kompozitlerin muayenesinde kullanılmaktadır. Hızlı, düşük maliyet ve işlem kolaylığı TR’nin avantajlarını arasındadır. Bu çalışma iki kısımdan meydana gelmektedir. İlk bölümünde raylı sistem araçlarında kullanılan kompozit yapısal bileşenler hakkında literatür araştırılması yapılmıştır. Çalışmanın ikinci kısmında, raylı sistemlerde kullanılan katmanlı polimer matrisli kompozit numuneler üretilmiştir. Termografik yöntemi ile bu numunelerin tahribatsız kontrolü incelenmiştir. İncelemenin sonunda, üretilen kompozit parçalarda termografik test metodunun kusur tespitinde başarılı olduğu gözlenmiştir.

Kaynakça

  • [1] J. Batchelor, “Use of fibre reinforced composites in modern railway vehicles,” Materials and Design, vol. 2, no. 4, pp. 172–182, 1981, doi: 10.1016/0261-3069(81)90017-0
  • [2] M. Robinson, E. Matsika, and Q. Peng, “Application of composites in rail vehicles,” in ICCM International Conferences on Composite Materials, 2017, doi: 10.1016/b978-0-12-803581-8.03965-5
  • [3] T. Li and L. Wang, “Bending behavior of sandwich composite structures with tunable 3D-printed core materials,” Composite Structures, vol. 175, pp. 46–57, Sep. 2017, doi: 10.1016/J.COMPSTRUCT.2017.05.001
  • [4] H. Y. Sarvestani, A. H. Akbarzadeh, H. Niknam, and K. Hermenean, “3D printed architected polymeric sandwich panels: Energy absorption and structural performance,” Composite Structures, vol. 200, pp. 886–909, Sep. 2018, doi: 10.1016/J.COMPSTRUCT.2018.04.002
  • [5] A. Zinno, E. Fusco, A. Prota, and G. Manfredi, “Multiscale approach for the design of composite sandwich structures for train application,” Composite Structures, vol. 92, no. 9, pp. 2208–2219, Aug. 2010, doi: 10.1016/J.COMPSTRUCT.2009.08.044
  • [6] M. Kim, J. Choe, and D. G. Lee, “Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb,” Composite Structures, vol. 158, pp. 227–234, Dec. 2016, doi: 10.1016/J.COMPSTRUCT.2016.09.029
  • [7] A. Hörold, B. Schartel, V. Trappe, M. Korzen, and J. Bünker, “Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants,” Composite Structures, vol. 160, pp. 1310–1318, Jan. 2017, doi: 10.1016/J.COMPSTRUCT.2016.11.027
  • [8] C. Zhu et al., “Fie performance of sandwich composites with intumescent mat protection: Evolving thermal insulation, post-fire performance and rail industry testing,” Fire Safety Journal, vol. 116, Sep. 2020, doi: 10.1016/j.firesaf.2020.103205
  • [9] M. Rakotomalala, S. Wagner, and M. Döring, “Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications,” Materials 2010, Vol. 3, Pages 4300-4327, vol. 3, Aug. 2010, doi: 10.3390/MA3084300
  • [10] [F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta, and P. Dubois, “New prospects in flame retardant polymer materials: From fundamentals to nanocomposites,” Materials Science and Engineering: R: Reports, vol. 63, no. 3, pp. 100–125, Jan. 2009, doi: 10.1016/J.MSER.2008.09.002
  • [11] M. Bar, R. Alagirusamy, and A. Das, “Flame retardant polymer composites,” Fibers and Polymers 2015 16:4, vol. 16, no. 4, pp. 705–717, Jun. 2015, doi: 10.1007/S12221-015-0705-6
  • [12] [11] P. J. Mistry, M. S. Johnson, and U. I. K. Galappaththi, “Selection and ranking of rail vehicle components for optimal lightweighting using composite materials:,” https://doi.org/10.1177/0954409720925685, vol. 235, no. 3, pp. 390–402, Jun. 2020, doi: 10.1177/0954409720925685
  • [13] [12] A. Poudel, K. R. Mitchell, T. P. Chu, S. Neidigk, and C. Jacques, “Non-destructive evaluation of composite repairs by using infrared thermography”, Journal of Composite Materials, vol. 50, no. 3, pp. 351–363, Mar. 2015, doi: 10.1177/0021998315574755
  • [14] [13] B. Ehrhart, B. Valeske, and C. Bockenheimer, Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, Woodhead Publishing, 2013
  • [15] T. Ullmann, R. Aoki, and T. Schmidt, “Lock-in Thermography for Process Integrated Non-destructive Evaluation of Carbon Fiber Reinforced Aircraft Structures,” in 10th International conference on Quantitative InfraRed Thermography, 2010, pp. 781-788
  • [16] N. P. Avdelidis, B. C. Hawtin, and D. P. Almond, “Transient thermography in the assessment of defects of aircraft composites,” NDT and E International, vol. 36, no. 6, pp. 433–439, Sep. 2003, doi: 10.1016/S0963-8695(03)00052-5
  • [17] Quality Magazine, “Active Thermography for Nondestructive Composites Testing”, July, 2013, [Online]. Available: https://www.qualitymag.com/articles/91207-active-thermography-for-nondestructive-composites-testing, [Accessed: Apr. 26, 2022]
  • [18] F. Çeçen , B. Aktaş , H. Öztürk , İ. Ş. Öztürk and M. B. Navdar , "Karbon-Fiber Plaka Donatılı Traverslerin, B70-Tipi Öngerilmeli Beton Traverslerle Karşılaştırmalı İncelenmesi", Demiryolu Mühendisliği, no. 15, pp. 97-110, Jan. 2022, doi:10.47072/demiryolu.1028740
  • [19] A. Singh, Z. Gu, X. Hou, Y. Liu, and D. J. Hughes, “Design optimisation of braided composite beams for lightweight rail structures using machine learning methods,” Composite Structures, vol. 282, p. 115107, Feb. 2022, doi: 10.1016/J.COMPSTRUCT.2021.115107
  • [20] P. J. Mistry, M. S. Johnson, S. Li, S. Bruni, and A. Bernasconi, “Parametric sizing study for the design of a lightweight composite railway axle,” Composite Structures, vol. 267, p. 113851, Jul. 2021, doi: 10.1016/J.COMPSTRUCT.2021.113851
  • [21] J. J. Carruthers, M. Calomfirescu, P. Ghys, and J. Prockat, “The application of a systematic approach to material selection for the lightweighting of metro vehicles,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 223, no. 5, pp. 427–437, Sep. 2009, doi: 10.1243/09544097JRRT279
  • [22] CER - The Community of European Railways, “Moving towards sustainable mobility summary a strategy for 2030 and beyond for the european raılway sector”, [Online]. Available: https://www.cer.be/sites/default/files/publication/CER-UIC_Sustainable_Mobility_Strate gy_-_SUMMARY.pdf, [Accessed: Apr. 14, 2022].
  • [23] V. Giannella, R. Sepe, A. Borrelli, G. de Michele, and E. Armentani, “Numerical investigation on the fracture failure of a railway axle,” Engineering Failure Analysis, vol. 129, Nov. 2021, doi: 10.1016/J.ENGFAILANAL.2021.105680
  • [24] M. Shahverdi, T. Good, G. Hannema, and R. Paradies, “Towards Noise and Weight Reduction by Application of FRP wheelsets for Freight Cars,” 19th Internatıonal Wheelset Congress, Italy, 2019
  • [25] “Metal composite doors for UK rail,” Reinforced Plastics, vol. 64, no. 1, pp. 8-8, Nov. 2021, doi: 10.1016/J.REPL.2019.12.021
  • [26] J. Zhang, X. biao Xiao, X. zhen Sheng, R. Fu, D. Yao, and X. song Jin, “Characteristics of interior noise of a Chinese high-speed train under a variety of conditions,” Journal of Zhejiang University-SCIENCE A, vol. 18, no. 8, pp. 617–630, Aug. 2017, doi: 10.1631/JZUS.A1600695
  • [27] C. Mellet, F. Létourneaux, F. Poisson, and C. Talotte, “High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution,” Journal of Sound and Vibration, vol. 293, no. 3–5, pp. 535–546, Jun. 2006, doi: 10.1016/J.JSV.2005.08.069
  • [28] H. M. Noh, “Contribution analysis of interior noise and floor vibration in high-speed trains by operational transfer path analysis,” Advances in Mechanical Engineering, vol. 9, no. 8, pp. 1–14, Aug. 2017, doi: 10.1177/1687814017714986
  • [29] J. Zhang, D. Yao, R. Wang, and X. Xiao, “Vibro-acoustic modelling of high-speed train composite floor and contribution analysis of its constituent materials,” Composite Structures, vol. 256, Jan. 2021, doi: 10.1016/j.compstruct.2020.113049
  • [30] J. S. Kim, “Fatigue assessment of tilting bogie frame for Korean tilting train: Analysis and static tests,” Engineering Failure Analysis, vol. 13, no. 8, pp. 1326–1337, Dec. 2006, doi: 10.1016/j.engfailanal.2005.10.007
  • [31] J. S. Kim and H. J. Yoon, “Structural behaviors of a GFRP composite bogie frame for urban subway trains under critical load conditions,” in Procedia Engineering, vol. 10, pp. 2375–2380, 2011, doi: 10.1016/j.proeng.2011.04.391
  • [32] J. S. Kim, S. J. Lee, and K. B. Shin, “Manufacturing and structural safety evaluation of a composite train carbody,” Composite Structures, vol. 78, no. 4, pp. 468–476, Jun. 2007, doi: 10.1016/j.compstruct.2005.11.006
  • [33] Wikipedia, “Eschede_derailment”, [Online]. Available: https://en.wikipedia.org/wiki/Eschede_derailment, [Accessed, June, 26, 2022]
  • [34] S. Fotouhi, F. Pashmforoush, M. Bodaghi, M. Fotouhi, “Autonomous damage recognition in visual inspection of laminated composite structures using deep learning”, Composite Structures, vol. 268, 2021, doi: 10.1016/j.compstruct.2021.113960
  • [35] C. J. Hellier, Handbook of nondestructive evaluation, NewYork, USA, McGraw Hill, 2020
  • [36] A. Castellano, P. Foti, A Fraddosio, S. Marzano, M. D. Piccioni, “Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches”, Composites Part B: Engineering, vol. 66, 2014, doi: 10.1016/j.compositesb.2014.04.024
  • [37] D. Xu, P.F. Liu, Z.P. Chen, “Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission”, Composite Structures, vol. 255, 2021, doi: 10.1016/j.compstruct.2020.112954
  • [38] Q. Hao, Y. Shen, Y. Wang, J. Liu, “An adaptive extraction method for rail crack acoustic emission signal under strong wheel-rail rolling noise of high-speed railway”, Mechanical Systems and Signal Processing, vol. 154, 2021, doi: 10.1016/j.ymssp.2020.107546
  • [39] S. Mishra, P. Sharan, K. Saara, “Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways”, Engineering Failure Analysis, vol. 138, 2022, doi: 10.1016/j.engfailanal.2022.106376
  • [40] D. D. Kumar, S. S. Raj, V. Sivananth, V. Ramkumar, “Damage detection in Aerospace structures using Chirped fiber Bragg grating”, Materials Today: Proceedings, 2022, doi: 10.1016/j.matpr.2022.05.149
  • [41] R. Yang, Y. He, “Optically and non-optically excited thermography for composites: A review”, Infrared Physics & Technology, vol. 75, p. 26-50, 2016, doi: 10.1016/j.infrared.2015.12.026
  • [42] Composites UK, “How can composites be monitored?”, [Online]. Available: https://compositesuk.co.uk/composite-materials/properties/inspection, [Accessed: 25. June-2022].
  • [43] A. Ghobadi, “Common Type of Damages in Composites and Their Inspections”. World Journal of Mechanics, 7, 24-33, 2017, doi: 10.4236/wjm.2017.72003
  • [44] Hexcel, “Hex Force Reinforcements” [Online]. Available: https://lindberg-lund.no/wp-content/uploads/2018/06/Hexcel_Handbok_fiberprodukter.pdf, [Accessed, September 19, 2022]
  • [45] A. Shimamura, Y. Hotta, H. Hyuga, M. Hotta, K. Hirao, “Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si3N4 filler with randomly oriented grains”, Scientific Reports, Vol. 10, 14296, 2020, doi: https://doi.org/10.1038/s41598-020-71745-w
  • [46] X. Pan, M. G. Debije, J. Schenning, W. Cees, M. Bastiaansen, “Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites”, ACS Applied Materials & Interfaces, Vol. 13, 28864, 2021, doi: https://doi.org/10.1021/acsami.1c06415

Thermographic Testing of Composite Materials Used in Rail System Vehicles

Yıl 2023, , 186 - 198, 31.01.2023
https://doi.org/10.47072/demiryolu.1202657

Öz

With the increase in industrial needs and the development of new engineering materials, technological advancements have gained great momentum in all types of machinery and vehicles. High-speed vehicles have been developed in rail system technologies to reduce travel times. With the increasing speed of these vehicles, the research for structurally more durable materials has emerged. Metallic materials do not meet the requirements due to their specific strength capacities, formability, and high conductivity. Alternatively, the use of composite materials is found. However, there are factors that limit the use of composite materials. One of these is that non-destructive control methods are difficult, and complex compared to metallic materials. Thermographic (TR) analysis method, which is one of the non-destructive examination methods, is used in the examination of composites. Fast, low-cost and ease of process are among the advantages of TR. This study consists of two parts. In the first part, literature research on composite structural components used in rail system vehicles was carried out. In the second part of the study, layered polymer matrix composite specimens which are used in railway systems were produced. The non-destructive control of these specimens was examined by the thermographic method. As a result of the examination, it was observed that the thermographic test method was successful in detecting defects in the composite parts produced.

Kaynakça

  • [1] J. Batchelor, “Use of fibre reinforced composites in modern railway vehicles,” Materials and Design, vol. 2, no. 4, pp. 172–182, 1981, doi: 10.1016/0261-3069(81)90017-0
  • [2] M. Robinson, E. Matsika, and Q. Peng, “Application of composites in rail vehicles,” in ICCM International Conferences on Composite Materials, 2017, doi: 10.1016/b978-0-12-803581-8.03965-5
  • [3] T. Li and L. Wang, “Bending behavior of sandwich composite structures with tunable 3D-printed core materials,” Composite Structures, vol. 175, pp. 46–57, Sep. 2017, doi: 10.1016/J.COMPSTRUCT.2017.05.001
  • [4] H. Y. Sarvestani, A. H. Akbarzadeh, H. Niknam, and K. Hermenean, “3D printed architected polymeric sandwich panels: Energy absorption and structural performance,” Composite Structures, vol. 200, pp. 886–909, Sep. 2018, doi: 10.1016/J.COMPSTRUCT.2018.04.002
  • [5] A. Zinno, E. Fusco, A. Prota, and G. Manfredi, “Multiscale approach for the design of composite sandwich structures for train application,” Composite Structures, vol. 92, no. 9, pp. 2208–2219, Aug. 2010, doi: 10.1016/J.COMPSTRUCT.2009.08.044
  • [6] M. Kim, J. Choe, and D. G. Lee, “Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb,” Composite Structures, vol. 158, pp. 227–234, Dec. 2016, doi: 10.1016/J.COMPSTRUCT.2016.09.029
  • [7] A. Hörold, B. Schartel, V. Trappe, M. Korzen, and J. Bünker, “Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants,” Composite Structures, vol. 160, pp. 1310–1318, Jan. 2017, doi: 10.1016/J.COMPSTRUCT.2016.11.027
  • [8] C. Zhu et al., “Fie performance of sandwich composites with intumescent mat protection: Evolving thermal insulation, post-fire performance and rail industry testing,” Fire Safety Journal, vol. 116, Sep. 2020, doi: 10.1016/j.firesaf.2020.103205
  • [9] M. Rakotomalala, S. Wagner, and M. Döring, “Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications,” Materials 2010, Vol. 3, Pages 4300-4327, vol. 3, Aug. 2010, doi: 10.3390/MA3084300
  • [10] [F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta, and P. Dubois, “New prospects in flame retardant polymer materials: From fundamentals to nanocomposites,” Materials Science and Engineering: R: Reports, vol. 63, no. 3, pp. 100–125, Jan. 2009, doi: 10.1016/J.MSER.2008.09.002
  • [11] M. Bar, R. Alagirusamy, and A. Das, “Flame retardant polymer composites,” Fibers and Polymers 2015 16:4, vol. 16, no. 4, pp. 705–717, Jun. 2015, doi: 10.1007/S12221-015-0705-6
  • [12] [11] P. J. Mistry, M. S. Johnson, and U. I. K. Galappaththi, “Selection and ranking of rail vehicle components for optimal lightweighting using composite materials:,” https://doi.org/10.1177/0954409720925685, vol. 235, no. 3, pp. 390–402, Jun. 2020, doi: 10.1177/0954409720925685
  • [13] [12] A. Poudel, K. R. Mitchell, T. P. Chu, S. Neidigk, and C. Jacques, “Non-destructive evaluation of composite repairs by using infrared thermography”, Journal of Composite Materials, vol. 50, no. 3, pp. 351–363, Mar. 2015, doi: 10.1177/0021998315574755
  • [14] [13] B. Ehrhart, B. Valeske, and C. Bockenheimer, Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, Woodhead Publishing, 2013
  • [15] T. Ullmann, R. Aoki, and T. Schmidt, “Lock-in Thermography for Process Integrated Non-destructive Evaluation of Carbon Fiber Reinforced Aircraft Structures,” in 10th International conference on Quantitative InfraRed Thermography, 2010, pp. 781-788
  • [16] N. P. Avdelidis, B. C. Hawtin, and D. P. Almond, “Transient thermography in the assessment of defects of aircraft composites,” NDT and E International, vol. 36, no. 6, pp. 433–439, Sep. 2003, doi: 10.1016/S0963-8695(03)00052-5
  • [17] Quality Magazine, “Active Thermography for Nondestructive Composites Testing”, July, 2013, [Online]. Available: https://www.qualitymag.com/articles/91207-active-thermography-for-nondestructive-composites-testing, [Accessed: Apr. 26, 2022]
  • [18] F. Çeçen , B. Aktaş , H. Öztürk , İ. Ş. Öztürk and M. B. Navdar , "Karbon-Fiber Plaka Donatılı Traverslerin, B70-Tipi Öngerilmeli Beton Traverslerle Karşılaştırmalı İncelenmesi", Demiryolu Mühendisliği, no. 15, pp. 97-110, Jan. 2022, doi:10.47072/demiryolu.1028740
  • [19] A. Singh, Z. Gu, X. Hou, Y. Liu, and D. J. Hughes, “Design optimisation of braided composite beams for lightweight rail structures using machine learning methods,” Composite Structures, vol. 282, p. 115107, Feb. 2022, doi: 10.1016/J.COMPSTRUCT.2021.115107
  • [20] P. J. Mistry, M. S. Johnson, S. Li, S. Bruni, and A. Bernasconi, “Parametric sizing study for the design of a lightweight composite railway axle,” Composite Structures, vol. 267, p. 113851, Jul. 2021, doi: 10.1016/J.COMPSTRUCT.2021.113851
  • [21] J. J. Carruthers, M. Calomfirescu, P. Ghys, and J. Prockat, “The application of a systematic approach to material selection for the lightweighting of metro vehicles,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 223, no. 5, pp. 427–437, Sep. 2009, doi: 10.1243/09544097JRRT279
  • [22] CER - The Community of European Railways, “Moving towards sustainable mobility summary a strategy for 2030 and beyond for the european raılway sector”, [Online]. Available: https://www.cer.be/sites/default/files/publication/CER-UIC_Sustainable_Mobility_Strate gy_-_SUMMARY.pdf, [Accessed: Apr. 14, 2022].
  • [23] V. Giannella, R. Sepe, A. Borrelli, G. de Michele, and E. Armentani, “Numerical investigation on the fracture failure of a railway axle,” Engineering Failure Analysis, vol. 129, Nov. 2021, doi: 10.1016/J.ENGFAILANAL.2021.105680
  • [24] M. Shahverdi, T. Good, G. Hannema, and R. Paradies, “Towards Noise and Weight Reduction by Application of FRP wheelsets for Freight Cars,” 19th Internatıonal Wheelset Congress, Italy, 2019
  • [25] “Metal composite doors for UK rail,” Reinforced Plastics, vol. 64, no. 1, pp. 8-8, Nov. 2021, doi: 10.1016/J.REPL.2019.12.021
  • [26] J. Zhang, X. biao Xiao, X. zhen Sheng, R. Fu, D. Yao, and X. song Jin, “Characteristics of interior noise of a Chinese high-speed train under a variety of conditions,” Journal of Zhejiang University-SCIENCE A, vol. 18, no. 8, pp. 617–630, Aug. 2017, doi: 10.1631/JZUS.A1600695
  • [27] C. Mellet, F. Létourneaux, F. Poisson, and C. Talotte, “High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution,” Journal of Sound and Vibration, vol. 293, no. 3–5, pp. 535–546, Jun. 2006, doi: 10.1016/J.JSV.2005.08.069
  • [28] H. M. Noh, “Contribution analysis of interior noise and floor vibration in high-speed trains by operational transfer path analysis,” Advances in Mechanical Engineering, vol. 9, no. 8, pp. 1–14, Aug. 2017, doi: 10.1177/1687814017714986
  • [29] J. Zhang, D. Yao, R. Wang, and X. Xiao, “Vibro-acoustic modelling of high-speed train composite floor and contribution analysis of its constituent materials,” Composite Structures, vol. 256, Jan. 2021, doi: 10.1016/j.compstruct.2020.113049
  • [30] J. S. Kim, “Fatigue assessment of tilting bogie frame for Korean tilting train: Analysis and static tests,” Engineering Failure Analysis, vol. 13, no. 8, pp. 1326–1337, Dec. 2006, doi: 10.1016/j.engfailanal.2005.10.007
  • [31] J. S. Kim and H. J. Yoon, “Structural behaviors of a GFRP composite bogie frame for urban subway trains under critical load conditions,” in Procedia Engineering, vol. 10, pp. 2375–2380, 2011, doi: 10.1016/j.proeng.2011.04.391
  • [32] J. S. Kim, S. J. Lee, and K. B. Shin, “Manufacturing and structural safety evaluation of a composite train carbody,” Composite Structures, vol. 78, no. 4, pp. 468–476, Jun. 2007, doi: 10.1016/j.compstruct.2005.11.006
  • [33] Wikipedia, “Eschede_derailment”, [Online]. Available: https://en.wikipedia.org/wiki/Eschede_derailment, [Accessed, June, 26, 2022]
  • [34] S. Fotouhi, F. Pashmforoush, M. Bodaghi, M. Fotouhi, “Autonomous damage recognition in visual inspection of laminated composite structures using deep learning”, Composite Structures, vol. 268, 2021, doi: 10.1016/j.compstruct.2021.113960
  • [35] C. J. Hellier, Handbook of nondestructive evaluation, NewYork, USA, McGraw Hill, 2020
  • [36] A. Castellano, P. Foti, A Fraddosio, S. Marzano, M. D. Piccioni, “Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches”, Composites Part B: Engineering, vol. 66, 2014, doi: 10.1016/j.compositesb.2014.04.024
  • [37] D. Xu, P.F. Liu, Z.P. Chen, “Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission”, Composite Structures, vol. 255, 2021, doi: 10.1016/j.compstruct.2020.112954
  • [38] Q. Hao, Y. Shen, Y. Wang, J. Liu, “An adaptive extraction method for rail crack acoustic emission signal under strong wheel-rail rolling noise of high-speed railway”, Mechanical Systems and Signal Processing, vol. 154, 2021, doi: 10.1016/j.ymssp.2020.107546
  • [39] S. Mishra, P. Sharan, K. Saara, “Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways”, Engineering Failure Analysis, vol. 138, 2022, doi: 10.1016/j.engfailanal.2022.106376
  • [40] D. D. Kumar, S. S. Raj, V. Sivananth, V. Ramkumar, “Damage detection in Aerospace structures using Chirped fiber Bragg grating”, Materials Today: Proceedings, 2022, doi: 10.1016/j.matpr.2022.05.149
  • [41] R. Yang, Y. He, “Optically and non-optically excited thermography for composites: A review”, Infrared Physics & Technology, vol. 75, p. 26-50, 2016, doi: 10.1016/j.infrared.2015.12.026
  • [42] Composites UK, “How can composites be monitored?”, [Online]. Available: https://compositesuk.co.uk/composite-materials/properties/inspection, [Accessed: 25. June-2022].
  • [43] A. Ghobadi, “Common Type of Damages in Composites and Their Inspections”. World Journal of Mechanics, 7, 24-33, 2017, doi: 10.4236/wjm.2017.72003
  • [44] Hexcel, “Hex Force Reinforcements” [Online]. Available: https://lindberg-lund.no/wp-content/uploads/2018/06/Hexcel_Handbok_fiberprodukter.pdf, [Accessed, September 19, 2022]
  • [45] A. Shimamura, Y. Hotta, H. Hyuga, M. Hotta, K. Hirao, “Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si3N4 filler with randomly oriented grains”, Scientific Reports, Vol. 10, 14296, 2020, doi: https://doi.org/10.1038/s41598-020-71745-w
  • [46] X. Pan, M. G. Debije, J. Schenning, W. Cees, M. Bastiaansen, “Enhanced Thermal Conductivity in Oriented Polyvinyl Alcohol/Graphene Oxide Composites”, ACS Applied Materials & Interfaces, Vol. 13, 28864, 2021, doi: https://doi.org/10.1021/acsami.1c06415
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Seyid Fehmi Diltemiz 0000-0002-3952-4456

Ersin Eroğlu 0000-0002-8670-2606

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 11 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

IEEE S. F. Diltemiz ve E. Eroğlu, “Raylı Sistem Araçlarında Kullanılan Kompozit Malzemelerin Termografik Muayene ile Kontrolü”, Demiryolu Mühendisliği, sy. 17, ss. 186–198, Ocak 2023, doi: 10.47072/demiryolu.1202657.