Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Nesil Demiryolu Traversleri ve Yerli FRP Donatı Kullanımının Deneysel Araştırması

Yıl 2021, , 53 - 64, 31.01.2021
https://doi.org/10.47072/demiryolu.803452

Öz

Ülkemizde ve dünyada ulaştırma sektöründe demiryollarının payı gittikçe arttığından, demiryolu üstyapı elemanlarından biri olan traverslere duyulan talep de artmaktadır. Günümüzde dünya genelinde demiryollarında milyarlarca travers kullanımdadır. Yeni inşa edilen demiryollarının ihtiyacı olan travers üretiminin yanı sıra, 40-50 yıllık servis ömrünü tamamlayamadan erken deforme olan önemli miktarda traversin de her yıl değiştirilmeleri gerekmektedir. Bu yüzden demiryolu kuruluşlarının bütçelerinin önemli bir kısmı travers kaynaklı bakım işlemlerine ayrılmak zorundadır. Dünya genelinde milyarlarca travers üretiminin ekstra çimento, agrega, çelik, yakıt tüketimi doğurması nedeniyle çevreye önemli zararı söz konusu olduğu gibi modern demiryolu işletmeciliğinde yüksek hız ve sefer sayıları nedeniyle, düşük bakım gerektiren “yeni nesil” çözümler geliştirilmesi mecburiyet halini almıştır. Diğer taraftan inşaat sektöründe kullanılmakta olan çelik donatıların korozyon ve yorulma gibi çeşitli dezavantajları da bulunmaktadır. Bu kapsamda günümüzde gelişmiş ülkelerde çelik donatıların yerini almaya başlayan fiber takviyeli polimer (FRP) donatıların demiryolu traverslerinde kullanımı alternatif bir çözüm olarak görülmüştür. Bu makalede, klasik betonarme traverslerin güncel literatürde geçen çeşitli sorunlarına ve son yıllarda geliştirilen yeni nesil çözümlere değinildikten sonra, bu sorunların yerli cam ve karbon fiber takviyeli polimer hammaddeler kullanılarak çözümlenebilme ihtimali ray mesnedinde statik yüklemeli pozitif moment deneyleri ile araştırılmıştır. Sonuçta dünyadaki emsallerinden daha düşük maliyetli ve daha yüksek servis ömrüne sahip inovatif milli travers modelleri geliştirilmesi adına olumlu sonuçlar elde edilmiştir.

Teşekkür

Bu çalışmada desteklerinden dolayı TCDD Sivas Beton Travers Fabrikası Müdürü Sn. Ali KARABEY’e, FRP donatı ve elyaf üreticileri dowAksa firması yetkilisi Sn. Ilgaz DOĞAN’a ve ve Polyfibers firması yetkilisi Sn. Faraz MALİK’e teşekkürlerimizi bildiririz.

Kaynakça

  • [1] W. Ferdous, A. Manalo, “Failures of mainline railway sleepers and suggested remedies – review of current practice,” Engineering Failure Analysis, vol. 44, pp. 17-35, April 2014.
  • [2] J. Taherinezhad, M. Sofi, P. Mendis, T. Ngo, “Strain rates in prestressed concrete sleepers and effects on cracking loads,” Electronic Journal of Structural Engineering, vol. 17, no. 1, pp. 65-75, January 2017.
  • [3] W. Ferdous, A. Manalo, G. V. Erp, T. Aravinthan, S. Kaewunruen ve A. M. Remennikov, “Composite railway sleepers – recent developments, challenges and future prospects,” Composite Structures, vol. 134, pp. 158–168, 2015, doi: 10.1016/j.compstruct.2015.08.058
  • [4] C. Esveld, Modern railway track, Zaltbommel - The Netherlands: MRT-Productions, 2014
  • [5] R. You, D. Li, C. Ngamkhanong, S. Kaewunruen, “Fatigue life assessment method for prestressed concrete sleepers,” Frontiers in Built Environment, vol. 3, no. 68, pp. 1-13, November 2017, doi: https://doi.org/10.3389/fbuil.2017.00068
  • [6] A. M. Remennikov, M. H. Murray, S. Kaewunruen, “Dynamic design guidelines for prestressed concrete sleepers”, 2008. [Online]. Avaliable: https://ro.uow.edu.au/engpapers/492/ [Accessed: 30.09.2020]
  • [7] J. R. Edwards, Z. Gao, H. E. Wolf, M. S. Dersch, Y. Qian, “Quantification of concrete railway sleeper bending moments using surface strain gauges,” Measurement, vol. 111, pp. 197–207, July 2017, doi: http://dx.doi.org/10.1016/j.measurement.2017.07.029
  • [8] A. Jokūbaıtıs, G. Marcˇiukaitis, J. Valivonis, “Influence of technological and environmental factors on the behavior of the reinforcement anchorage zone of prestressed concrete sleepers,” Construction and Building Materials, vol. 121, part C, pp. 507-518, September 2016, doi: http://dx.doi.org/10.1016/j.conbuildmat.2016.06.025
  • [9] R. J. Quirós-Orozco, J. R. Edwards, Y. Qian, M. S. Dersch, “Quantification of loading environment and flexural demand of prestressed concrete crossties under shared corridor operating conditions,” Journal of Transportation Research Record, vol. 2672, no. 10, pp. 136-145, August 2018, doi: https://doi.org/10.1177/0361198118793500
  • [10] J. Sýkorová, J. Bártová, P. Štemberk, “Prestressed concrete sleeper under extreme loading conditions” 18th International Conference Engineering Mechanics, Svratka, Czech Republic, pp. 312-313, 2012.
  • [11] H. Isozaki, J. Oosawa, Y. Kawano, R. Hirasawa, S. Kubota, S. Konishi, “Measures against electrolytic rail corrosion in Tokyo metro subway tunnels,” Procedia Engineering, vol. 165, pp. 583 – 592, December 2016, doi: https://doi.org/10.1016/j.proeng.2016.11.754
  • [12] T. J. Barlo, A.D. Zdunek, “Stray current corrosion in electrified rail systems, northwestern university final report,” 1995 [Online]. Avaliable: https://rosap.ntl.bts.gov/view/dot/13213/dot_13213_DS1.pdf
  • [13] ACI-ASCE Committee 423, “State-of-the-art report on partially prestressed concrete, ACI 423.5R-99,” 1999 [Online]. Avaliable: http://civilwares.free.fr/ACI/MCP04/4235r_99.pdf 1999.
  • [14] S. Kaewunruen, “Experimental and numerical studies for evaluating dynamic behaviour of prestressed concrete sleepers subject to severe impact loading,” PhD dissertation, School of Civil Mining & Environmental Engineering, University of Wollongong, New South Wales, 2007
  • [15] H. E. Wolf, “Flexural behavior of prestressed concrete monoblock crossties,” Master of Science Thesis, Civil Engineering, Graduate College of the University of Illinois, Urbana-Champaign, Illinois, 2015
  • [16] N. Ö. Bezgin, “An insight into design of prefabricated and prestressed concrete monoblock railway ties for service loads,” Challenge Journal of Structural Mechanics, vol. 4, no. 4, pp. 126-136, December 2018, doi: https://doi.org/10.20528/cjsmec.2018.04.001
  • [17] E. Vatangül, “Kompozit malzemelerin mekanik özelliklerinin belirlenmesi ve ansys 10 programı ile ısıl gerilme analizi,” [Online]. Available: http://ansys.deu.edu.tr/wp-content/uploads/cmdm/621/1450959921_EREN_VATANGUL_2002508078.pdf [Accessed: 30.09.2020].
  • [18] F. Aydın, “Cam lifi takviyeli plastik (gfrp) kompozit ve beton ile üretilen hibrit yapı elemanlarının mekanik performansının araştırılması,” Doktora Tezi, Fen Bilimleri Enstitüsü, Sakarya Üniversitesi, Sakarya, 2011
  • [19] B. Felekoğlu, “Alternatif yapı malzemeleri,” 2019. [Online]. Avaliable: kisi.deu.edu.tr/burak.felekoglu/04.Polipart2.pdf [Accessed: 30.09.2020]
  • [20] G. Yavuz, “Lif takviyeli polimerlerin betonarme kirişlerde donatı olarak kullanımı,” e-Journal of New World Sciences Academy. vol. 6, no.4, October 2011.
  • [21] R. Fico, “Limit states design of concrete structures reinforced with frp bars,” Ph. D. Dissertation, Materials and Structures Engineering, University of Naples Federico II, Napoly, 2008
  • [22] National Research Coincil-Advisory Commitee on Technical Recommendations for Construction (CNR), Rome, Italy, Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars (CNR-DT 203/2006), 2007. [Online]. Available: https://www.cnr.it/en/node/2639 [Accessed: 30.09.2020].
  • [23] T. Abadi, L. Le Pen, A. Zervos, W. Powrie, “Improving the performance of railway track through ballast interventions,” Journal of Rail and Rapid Transit, vol. 232, no. 2, pp. 337-355, October 2016, doi: https://doi.org/10.1177%2F0954409716671545
  • [24] A. Mårtensson, M. Nilsson, “Dynamic analysis of pedestrian load models for footbridges,” Master of Science Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Göteborg, 2014
  • [25] F. Çeçen, “Karbon – fiber donatıyla öngerilmesiz monoblok demiryolu beton traversi geliştirilmesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ulaştırma ABD, Gazi Osman Paşa Üniversitesi, Tokat, 2019

New Generation Railway Sleepers and Experimental Research of Domestic FRP Reinforcement Use

Yıl 2021, , 53 - 64, 31.01.2021
https://doi.org/10.47072/demiryolu.803452

Öz

Billions of sleepers are used on railways around the world today. As the share of railways in the transportation sector is increasing, the demand for sleepers is also increasing. Due to the various capacity problems of the sleepers, a significant number of them need to be replaced every year. For this reason, a significant part of the budgets of the railway organizations have to be devoted to sleeper maintenance operations. On the other hand, “new generation” feasible solutions have become compulsory due to the high speed modern railway operations. Production of billions of sleepers have significant environmental damage due to extra cement, aggregate, steel and fuel consumption. Today, many countries around the world have various sleeper patents suitable for their operating conditions and local resources. In addition, in the "new generation" sleeper models; high-cost solutions that can meet today's low maintenance requirements have become a must. On the other hand, steel reinforcements used in the construction industry have various disadvantages such as corrosion and fatigue. In this context, the use of fiber reinforced polymer reinforcements in railway sleepers, which has started to replace steel reinforcements in developed countries, has been seen as an alternative solution. In this article, after mentioning the various problems of existing reinforced concrete sleepers in the current literature, the possibility of solving these problems by using domestic glass and carbon fiber reinforced polymer raw materials is investigated in the light of experimental studies. As a result, positive results have been obtained in terms of developing innovative national sleeper models with lower cost and higher service life than their counterparts in the world.

Kaynakça

  • [1] W. Ferdous, A. Manalo, “Failures of mainline railway sleepers and suggested remedies – review of current practice,” Engineering Failure Analysis, vol. 44, pp. 17-35, April 2014.
  • [2] J. Taherinezhad, M. Sofi, P. Mendis, T. Ngo, “Strain rates in prestressed concrete sleepers and effects on cracking loads,” Electronic Journal of Structural Engineering, vol. 17, no. 1, pp. 65-75, January 2017.
  • [3] W. Ferdous, A. Manalo, G. V. Erp, T. Aravinthan, S. Kaewunruen ve A. M. Remennikov, “Composite railway sleepers – recent developments, challenges and future prospects,” Composite Structures, vol. 134, pp. 158–168, 2015, doi: 10.1016/j.compstruct.2015.08.058
  • [4] C. Esveld, Modern railway track, Zaltbommel - The Netherlands: MRT-Productions, 2014
  • [5] R. You, D. Li, C. Ngamkhanong, S. Kaewunruen, “Fatigue life assessment method for prestressed concrete sleepers,” Frontiers in Built Environment, vol. 3, no. 68, pp. 1-13, November 2017, doi: https://doi.org/10.3389/fbuil.2017.00068
  • [6] A. M. Remennikov, M. H. Murray, S. Kaewunruen, “Dynamic design guidelines for prestressed concrete sleepers”, 2008. [Online]. Avaliable: https://ro.uow.edu.au/engpapers/492/ [Accessed: 30.09.2020]
  • [7] J. R. Edwards, Z. Gao, H. E. Wolf, M. S. Dersch, Y. Qian, “Quantification of concrete railway sleeper bending moments using surface strain gauges,” Measurement, vol. 111, pp. 197–207, July 2017, doi: http://dx.doi.org/10.1016/j.measurement.2017.07.029
  • [8] A. Jokūbaıtıs, G. Marcˇiukaitis, J. Valivonis, “Influence of technological and environmental factors on the behavior of the reinforcement anchorage zone of prestressed concrete sleepers,” Construction and Building Materials, vol. 121, part C, pp. 507-518, September 2016, doi: http://dx.doi.org/10.1016/j.conbuildmat.2016.06.025
  • [9] R. J. Quirós-Orozco, J. R. Edwards, Y. Qian, M. S. Dersch, “Quantification of loading environment and flexural demand of prestressed concrete crossties under shared corridor operating conditions,” Journal of Transportation Research Record, vol. 2672, no. 10, pp. 136-145, August 2018, doi: https://doi.org/10.1177/0361198118793500
  • [10] J. Sýkorová, J. Bártová, P. Štemberk, “Prestressed concrete sleeper under extreme loading conditions” 18th International Conference Engineering Mechanics, Svratka, Czech Republic, pp. 312-313, 2012.
  • [11] H. Isozaki, J. Oosawa, Y. Kawano, R. Hirasawa, S. Kubota, S. Konishi, “Measures against electrolytic rail corrosion in Tokyo metro subway tunnels,” Procedia Engineering, vol. 165, pp. 583 – 592, December 2016, doi: https://doi.org/10.1016/j.proeng.2016.11.754
  • [12] T. J. Barlo, A.D. Zdunek, “Stray current corrosion in electrified rail systems, northwestern university final report,” 1995 [Online]. Avaliable: https://rosap.ntl.bts.gov/view/dot/13213/dot_13213_DS1.pdf
  • [13] ACI-ASCE Committee 423, “State-of-the-art report on partially prestressed concrete, ACI 423.5R-99,” 1999 [Online]. Avaliable: http://civilwares.free.fr/ACI/MCP04/4235r_99.pdf 1999.
  • [14] S. Kaewunruen, “Experimental and numerical studies for evaluating dynamic behaviour of prestressed concrete sleepers subject to severe impact loading,” PhD dissertation, School of Civil Mining & Environmental Engineering, University of Wollongong, New South Wales, 2007
  • [15] H. E. Wolf, “Flexural behavior of prestressed concrete monoblock crossties,” Master of Science Thesis, Civil Engineering, Graduate College of the University of Illinois, Urbana-Champaign, Illinois, 2015
  • [16] N. Ö. Bezgin, “An insight into design of prefabricated and prestressed concrete monoblock railway ties for service loads,” Challenge Journal of Structural Mechanics, vol. 4, no. 4, pp. 126-136, December 2018, doi: https://doi.org/10.20528/cjsmec.2018.04.001
  • [17] E. Vatangül, “Kompozit malzemelerin mekanik özelliklerinin belirlenmesi ve ansys 10 programı ile ısıl gerilme analizi,” [Online]. Available: http://ansys.deu.edu.tr/wp-content/uploads/cmdm/621/1450959921_EREN_VATANGUL_2002508078.pdf [Accessed: 30.09.2020].
  • [18] F. Aydın, “Cam lifi takviyeli plastik (gfrp) kompozit ve beton ile üretilen hibrit yapı elemanlarının mekanik performansının araştırılması,” Doktora Tezi, Fen Bilimleri Enstitüsü, Sakarya Üniversitesi, Sakarya, 2011
  • [19] B. Felekoğlu, “Alternatif yapı malzemeleri,” 2019. [Online]. Avaliable: kisi.deu.edu.tr/burak.felekoglu/04.Polipart2.pdf [Accessed: 30.09.2020]
  • [20] G. Yavuz, “Lif takviyeli polimerlerin betonarme kirişlerde donatı olarak kullanımı,” e-Journal of New World Sciences Academy. vol. 6, no.4, October 2011.
  • [21] R. Fico, “Limit states design of concrete structures reinforced with frp bars,” Ph. D. Dissertation, Materials and Structures Engineering, University of Naples Federico II, Napoly, 2008
  • [22] National Research Coincil-Advisory Commitee on Technical Recommendations for Construction (CNR), Rome, Italy, Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars (CNR-DT 203/2006), 2007. [Online]. Available: https://www.cnr.it/en/node/2639 [Accessed: 30.09.2020].
  • [23] T. Abadi, L. Le Pen, A. Zervos, W. Powrie, “Improving the performance of railway track through ballast interventions,” Journal of Rail and Rapid Transit, vol. 232, no. 2, pp. 337-355, October 2016, doi: https://doi.org/10.1177%2F0954409716671545
  • [24] A. Mårtensson, M. Nilsson, “Dynamic analysis of pedestrian load models for footbridges,” Master of Science Thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Göteborg, 2014
  • [25] F. Çeçen, “Karbon – fiber donatıyla öngerilmesiz monoblok demiryolu beton traversi geliştirilmesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ulaştırma ABD, Gazi Osman Paşa Üniversitesi, Tokat, 2019
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Ferhat Çeçen 0000-0003-2100-8071

Bekir Aktaş 0000-0003-3072-7983

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 1 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

IEEE F. Çeçen ve B. Aktaş, “Yeni Nesil Demiryolu Traversleri ve Yerli FRP Donatı Kullanımının Deneysel Araştırması”, Demiryolu Mühendisliği, sy. 13, ss. 53–64, Ocak 2021, doi: 10.47072/demiryolu.803452.

Cited By