Derleme
BibTex RIS Kaynak Göster

Ray Pedi ve Travers Altı Pedlerin Hat Bileşenleri ve Hat Performansı Üzerindeki Etkileri

Yıl 2021, Sayı: 13, 14 - 28, 31.01.2021
https://doi.org/10.47072/demiryolu.787758

Öz

Bir demiryolu hattının esneme direnci hat performansını önemli ölçüde etkiler. İstenilen esneme direncini hat üzerinde sağlayabilmek için ray pedleri ve travers altı pedlere ihtiyaç duyulur. Ray pedleri, ray ondülasyonlarının engellenmesini ve traverslerin dinamik yük tahribatlarına karşı korunmasını sağlar. Travers altı pedler ise balast tabakasındaki aşınmayı azaltır. Yumuşak ped kullanımı hatta daha eşit bir yük dağılımı sağlarken bir diğer yandan da hat sehimlerini artırır. Bu nedenle, kullanılan pedlerin, maksimum hat performansını sağlayacak şekilde optimum esneme direncine sahip olması gerekir. Bu çalışmada, ray pedleri ve travers altı pedleri kullanımının ray, travers ve balast katmanı üzerindeki etkileri araştırılmıştır. Böylece pedlerin, hat tasarımında göz önünde bulundurulması gereken hususlar üzerindeki etkilerini içeren temel bir kaynak oluşturmak hedeflenmiştir. Çalışma sonucunda elastik pedlerin esneme direncinin, her bir hat katmanı üzerinde gerilme, moment, titreşim ve yer değiştirme kriterleri açısından farklı etkileri olduğu görülmüştür. Yeni inşa edilen veya yenileme çalışması yapılan bir hatta maksimum hat performansının sağlanabilmesi için önerilere yer verilmiştir.

Kaynakça

  • [1] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, “The use of elastic elements in railway tracks: A state of the art review,” Constr and Build Mater, vol. 75, pp. 293–305, 2015.
  • [2] J. Nielsen, A. Johansson, and T. Vernersson, “Train–track interaction and mechanisms of irregular wear on wheel and rail surfaces,” Vehicle Syst Dyn, vol. 40, no. 1–3, pp. 3–54, 2003.
  • [3] P. F. Teixeira, “Contribución a la reducción de los costes de mantenimiento de vías de alta velocidad mediante la optimización de su rigidez vertical,” Ph.D. dissertation, E.T.S. Ingenieros de Caminos, Canales y Puertos, 2003.
  • [4] V. Arlı, “Demiryolu Mühendisliği (genişletilmiş 2. baskı),” İstanbul: Birsen Yayınevi, 2015.
  • [5] E. T. Selig, J. M. Waters, “Track geotechnology and substructure management,” London: Thomas Telford; 1994.
  • [6] H. Xia, N. Zhang, and W. W. Guo, “Analysis of resonance mechanism and conditions of train–bridge system,” J Sound Vib, vol. 297, no. 3–5, pp. 810–822, 2006.
  • [7] D. J. Thompson, C. J. C. Jones, “Noise and vibration from railway vehicles,” Handbook of Railway Vehicle Dynamics, New York, USA. CRC Press, Taylor & Francis, 2006, pp. 279–325. 

  • [8] X. Song, Y. Qian, K. Wang, and P. Liu, “Effect of rail pad stiffness on vehicle–track dynamic interaction excited by rail corrugation in metro,” Transp Res Record, vol. 2674, no. 6, pp. 225–243, 2020.
  • [9] Gürmak Demiryolu, “W21 Ray Bağlantı Sistemi” [Online]. Available: https://www.gurmakdemiryolu.com.tr/tr/urunlerimiz/w21-ray-baglanti-sistemi/. [Accessed July 7, 2020].
  • [10] Indiamart, “Grooved rubber sole plates rail pad” [Online]. Available: https://www.indiamart.com/proddetail/grooved-rubber-sole-plates-rail-pad-20756032791.html. [Accessed July 7, 2020].
  • [11] EN 13481-2. Railway applications–track–performance requirements for fastening systems. Fastening systems for concrete sleepers.
  • [12] A. López-Pita, Ed., Infraestructuras ferroviarias. Barselona, İspanya: Edicions UPC, 2006.
  • [13] A. Gomes Correia, J. Cunha, “Analysis of nonlinear soil modeling in the subgrade and rail track response under HST,” Transport Geotech, vol. 1, no. 4, pp. 147–156, 2014.
  • [14] N. Hasan, “Rail pad stiffness and classification system,” J Transp Eng, Part A: Systems, vol. 145, no. 5, 04019012, 2019.
  • [15] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, “The use of deconstructed tire rail pads in railroad tracks: Impact of pad thickness,” Mater Design, vol. 58, pp. 198–203, 2014.
  • [16] E. Balcı, N. Ö. Bezgin, “Hat esneme direncinin hat performansı üzerindeki etkileri,” Demiryolu Mühendisliği, vol. 11, pp. 75–85, 2020.
  • [17] Setsobhonkul, S., Kaewunruen, S., & Sussman, J. M. (2017). Lifecycle Assessments of Railway Bridge Transitions Exposed to Extreme Climate Events. Frontiers in Built Environment, 3. doi:10.3389/fbuil.2017.00035
  • [18] M. Hiensch, J. C. O. Nielsen, and E. Verheijen, “Rail corrugation in The Netherlands-measurements and simulations,” Wear, vol. 253, pp. 140–149, 2002.
  • [19] Thompson, D., “Railway Noise and Vibration: Mechanisms, Modelling and Means of Control,” Oxford, UK: Elsevier, 2009.
  • [20] A. Khajehdezfuly, “Effect of rail pad stiffness on the wheel/rail force intensity in a railway slab track with short-wave irregularity,” P I Mech Eng F-J Rai, 095440971882541, 2019.
  • [21] Y. Sato, A. Matsumoto, and K. Knothe, “Review on rail corrugation studies,” Wear, vol. 253, pp. 130–139, 2002.
  • [22] K. Knothe, B. Ripke, “The effects of the parameters of wheelset, track and running conditions on the growth rate of rail corrugations,” in Proceedings of the 11th IAVSD Symposium. Kingston, Ontario, CA, 1989, pp. 345–356
  • [23] G. Diana, F. Cheli, S. Bruni, and A. Collina, “Experimental and numerical investigation on subway short pitch corrugation,” Vehicle Syst Dyn, vol. 28, pp. 234–245, 1998.
  • [24] H. Ilias, “The influence of railpad stiffness on wheelset/track interaction and corrugation growth,” J Sound Vib, vol. 227, pp. 935–948, 1999.
  • [25] J. I. Egana, J. Vinolas, and M. Seco, “Investigation of the influence of rail pad stiffness on rail corrugation on a transit system,” Wear, vol. 261, no. 2, pp. 216–224, 2006.
  • [26] S. L. Grassie, J. A. Elkins, “Rail corrugation on north american transit systems,” Vehicle Syst Dyn, vol. 28, pp. 5–17, 1998.
  • [27] K. Giannakos, “Influence of rail pad stiffness on track stressing, life-cycle and noise emission,” in Proceeding of the second international conference on sustainable construction materials and technologies, Marche, Italy, 2010
  • [28] S. Kaewunruen, A. M. Remennikov, “An experimental evaluation of the attenuation effect of rail pad on flexural behaviour of railway concrete sleeper under severe impact loads,” in Proceeding of the 2008 Australian structural engineering conference, Melbourne, Australia, 2008
  • [29] I. Carrascal, J. A. Casado, S. Diego, and J. A. Polanco, “Atenuación frente a impacto en sistemas de sujeción ferroviaria de alta velocidad,” J Anales Mecán Fract, vol. 28, no. 2, pp. 713–718, 2011.
  • [30] N. Vincent, P. Bouvet, D. J. Thompson, and P. E. Gautier, “Theoretical optimization of track components to reduce rolling noise,” J Sound Vib, vol. 193, no. 1, pp. 161–171, 1996.
  • [31] T. X. Wu, D. J. Thompson, “The effects on railway rolling noise of wave reflections in the rail and support stiffening due to the presence of multiple wheels,” Appl Acoust, vol. 62, pp. 1249–1266, 2001.
  • [32] G. Leykauf, W. Stahl, “Untersuchungen und Erfahrungen mit besohlten Schwellen,” EI Der Eisenbahningenieur, vol. 55, no. 6, pp. 8–16, 2004.
  • [33] S. Kaewunruen, A. M. Remennikov, “Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters,” J Sound Vib, vol. 298, no. 1–2, pp 453–461, 2006.
  • [34] R. A. Clark, P. A. Dean, J. A. Elkins, and S. G. Newton, “An investigation into the dynamics effects of railway vehicles running on corrugated rails,” J Mech Eng Sci, vol. 24, pp. 65–76, 1982.
  • [35] C. Esveld, “Modern Railway Track, second ed.,” The Netherlands: MRT-Productions, 2001.
  • [36] S. Lakuši, M. Ahac, and I. Haladin, “Experimental investigation of railway track with under sleeper pad,” in 10th Slovenian road and transportation congress, Ljubljana, Slovenia, 2010, pp. 20–22
  • [37] H. Loy, “Under Sleeper Pads: Improving Track Quality while Reducing Operational Costs,” European Railway Review, vol. 4, pp. 46–51, 2008.
  • [38] S. Witt, “The influence of under sleeper pads on railway track Dynamics,” Magister dissertation, Dept. Manage. Eng., Solid Mech. Div., Linköping Univ., Linköping, Sweden, 2008
  • [39] F. N. Müller-Boruttau, V. Rosenthal, and N. Breitsamter, “Innovative ballasted track: concrete sleepers with sole pads,” WCRR. Cologne, Germany, 2001
  • [40] A. Riessberger, “Ballast track for high speeds,” Proceedings of Tracks for High-Speed Railways, Porto, Portugal, 2006, pp. 23-44
  • [41] R. Schilder, 2006. UIC Project no. I/05/U/440 USP-Under Sleeper Pads. Applications and Benefits of Elastic Elements in Ballasted Tracks UIC, Paris 17.
  • [42] F. Müller-Boruttau, U. Kleinert, “Betonschwellen mit Elastischer Sohle,” ETR, vol. 50, no. H3, pp. 90–98, 2001.
  • [43] A. Johansson, J. C. O. Nielsen, R. Bolmsvik, and A. Karlström, “Under sleeper pads – influence on dynamic train-track interaction,” Wear, vol. 265, pp. 1479–1687, 2008.
  • [44] P. Schneider, R. Bolmsvik, and J. C. O. Nielsen, “In situ performance of a ballasted railway track with under sleeper pads,” P I Mech Eng F-J Rai, vol. 225, no. 3, pp. 299–309, 2011.
  • [45] M. Krüger, 2007. Theoretical Investigations/Calculations. Work Package Number 2a of UIC Project Under Sleeper Pads. 

  • [46] S. K. Navaratnarajah, B. Indraratna, and T. N. Ngo, “Influence of Under Sleeper Pads on Ballast Behavior Under Cyclic Loading: Experimental and Numerical Studies,” J Geotech Geoenviron, vol. 144, no. 9, 04018068, 2018.
  • [47] W. Stahl, “Improvement of ballasted tracks using sleeper pads – investigations and experiences in Germany,” in Proceedings Seventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim, Norway, 2005
  • [48] J. Jenkins, S. Stephenson, G. Clayton, G. Morland, and D. L. Lyon, “Incidences des
paramètres caracteristiques de la voie et des vehicules sur les efforts dynamics verticaux qui se développent entre rail et roue,” Rail International, vol. 10, 1974. 

  • [49] UIC (International Union of Railways) USP Report, Project no. I/05/U/440, 2009

The effects of the Rail Pads and Under Sleeper Pads on the Track Components and Track Performance

Yıl 2021, Sayı: 13, 14 - 28, 31.01.2021
https://doi.org/10.47072/demiryolu.787758

Öz

Railway track stiffness is a highly effective parameter of track performance. In order to provide desired track stiffness, rail pads and under sleeper pads can be used. These two pads have different impacts on different track layers. Rail pads restrain the improvement of rail corrugations and preserve the sleeper against the dynamic impact loads. Under sleeper pads reduce the attrition of the ballast layer. While soft pads allow even distribution of wheel loads, they also lead to high track deflections. Therefore, pads must have optimum stiffness value that will provide maximum track performance. In this work, the effect of the use of rail pads and under sleeper pads on the rail, sleeper, and ballast layer are investigated. Thereby, it is aimed to create a fundamental resource that covers the effects of pads on the subjects that must be considered in railway track design. As a result, it is observed that the stiffness of the rail pads has different effects in terms of stress, moment, vibration, and movement criteria. Suggestions for providing maximum track performance in a newly constructed track or a track with replacement work are offered.

Kaynakça

  • [1] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, “The use of elastic elements in railway tracks: A state of the art review,” Constr and Build Mater, vol. 75, pp. 293–305, 2015.
  • [2] J. Nielsen, A. Johansson, and T. Vernersson, “Train–track interaction and mechanisms of irregular wear on wheel and rail surfaces,” Vehicle Syst Dyn, vol. 40, no. 1–3, pp. 3–54, 2003.
  • [3] P. F. Teixeira, “Contribución a la reducción de los costes de mantenimiento de vías de alta velocidad mediante la optimización de su rigidez vertical,” Ph.D. dissertation, E.T.S. Ingenieros de Caminos, Canales y Puertos, 2003.
  • [4] V. Arlı, “Demiryolu Mühendisliği (genişletilmiş 2. baskı),” İstanbul: Birsen Yayınevi, 2015.
  • [5] E. T. Selig, J. M. Waters, “Track geotechnology and substructure management,” London: Thomas Telford; 1994.
  • [6] H. Xia, N. Zhang, and W. W. Guo, “Analysis of resonance mechanism and conditions of train–bridge system,” J Sound Vib, vol. 297, no. 3–5, pp. 810–822, 2006.
  • [7] D. J. Thompson, C. J. C. Jones, “Noise and vibration from railway vehicles,” Handbook of Railway Vehicle Dynamics, New York, USA. CRC Press, Taylor & Francis, 2006, pp. 279–325. 

  • [8] X. Song, Y. Qian, K. Wang, and P. Liu, “Effect of rail pad stiffness on vehicle–track dynamic interaction excited by rail corrugation in metro,” Transp Res Record, vol. 2674, no. 6, pp. 225–243, 2020.
  • [9] Gürmak Demiryolu, “W21 Ray Bağlantı Sistemi” [Online]. Available: https://www.gurmakdemiryolu.com.tr/tr/urunlerimiz/w21-ray-baglanti-sistemi/. [Accessed July 7, 2020].
  • [10] Indiamart, “Grooved rubber sole plates rail pad” [Online]. Available: https://www.indiamart.com/proddetail/grooved-rubber-sole-plates-rail-pad-20756032791.html. [Accessed July 7, 2020].
  • [11] EN 13481-2. Railway applications–track–performance requirements for fastening systems. Fastening systems for concrete sleepers.
  • [12] A. López-Pita, Ed., Infraestructuras ferroviarias. Barselona, İspanya: Edicions UPC, 2006.
  • [13] A. Gomes Correia, J. Cunha, “Analysis of nonlinear soil modeling in the subgrade and rail track response under HST,” Transport Geotech, vol. 1, no. 4, pp. 147–156, 2014.
  • [14] N. Hasan, “Rail pad stiffness and classification system,” J Transp Eng, Part A: Systems, vol. 145, no. 5, 04019012, 2019.
  • [15] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, “The use of deconstructed tire rail pads in railroad tracks: Impact of pad thickness,” Mater Design, vol. 58, pp. 198–203, 2014.
  • [16] E. Balcı, N. Ö. Bezgin, “Hat esneme direncinin hat performansı üzerindeki etkileri,” Demiryolu Mühendisliği, vol. 11, pp. 75–85, 2020.
  • [17] Setsobhonkul, S., Kaewunruen, S., & Sussman, J. M. (2017). Lifecycle Assessments of Railway Bridge Transitions Exposed to Extreme Climate Events. Frontiers in Built Environment, 3. doi:10.3389/fbuil.2017.00035
  • [18] M. Hiensch, J. C. O. Nielsen, and E. Verheijen, “Rail corrugation in The Netherlands-measurements and simulations,” Wear, vol. 253, pp. 140–149, 2002.
  • [19] Thompson, D., “Railway Noise and Vibration: Mechanisms, Modelling and Means of Control,” Oxford, UK: Elsevier, 2009.
  • [20] A. Khajehdezfuly, “Effect of rail pad stiffness on the wheel/rail force intensity in a railway slab track with short-wave irregularity,” P I Mech Eng F-J Rai, 095440971882541, 2019.
  • [21] Y. Sato, A. Matsumoto, and K. Knothe, “Review on rail corrugation studies,” Wear, vol. 253, pp. 130–139, 2002.
  • [22] K. Knothe, B. Ripke, “The effects of the parameters of wheelset, track and running conditions on the growth rate of rail corrugations,” in Proceedings of the 11th IAVSD Symposium. Kingston, Ontario, CA, 1989, pp. 345–356
  • [23] G. Diana, F. Cheli, S. Bruni, and A. Collina, “Experimental and numerical investigation on subway short pitch corrugation,” Vehicle Syst Dyn, vol. 28, pp. 234–245, 1998.
  • [24] H. Ilias, “The influence of railpad stiffness on wheelset/track interaction and corrugation growth,” J Sound Vib, vol. 227, pp. 935–948, 1999.
  • [25] J. I. Egana, J. Vinolas, and M. Seco, “Investigation of the influence of rail pad stiffness on rail corrugation on a transit system,” Wear, vol. 261, no. 2, pp. 216–224, 2006.
  • [26] S. L. Grassie, J. A. Elkins, “Rail corrugation on north american transit systems,” Vehicle Syst Dyn, vol. 28, pp. 5–17, 1998.
  • [27] K. Giannakos, “Influence of rail pad stiffness on track stressing, life-cycle and noise emission,” in Proceeding of the second international conference on sustainable construction materials and technologies, Marche, Italy, 2010
  • [28] S. Kaewunruen, A. M. Remennikov, “An experimental evaluation of the attenuation effect of rail pad on flexural behaviour of railway concrete sleeper under severe impact loads,” in Proceeding of the 2008 Australian structural engineering conference, Melbourne, Australia, 2008
  • [29] I. Carrascal, J. A. Casado, S. Diego, and J. A. Polanco, “Atenuación frente a impacto en sistemas de sujeción ferroviaria de alta velocidad,” J Anales Mecán Fract, vol. 28, no. 2, pp. 713–718, 2011.
  • [30] N. Vincent, P. Bouvet, D. J. Thompson, and P. E. Gautier, “Theoretical optimization of track components to reduce rolling noise,” J Sound Vib, vol. 193, no. 1, pp. 161–171, 1996.
  • [31] T. X. Wu, D. J. Thompson, “The effects on railway rolling noise of wave reflections in the rail and support stiffening due to the presence of multiple wheels,” Appl Acoust, vol. 62, pp. 1249–1266, 2001.
  • [32] G. Leykauf, W. Stahl, “Untersuchungen und Erfahrungen mit besohlten Schwellen,” EI Der Eisenbahningenieur, vol. 55, no. 6, pp. 8–16, 2004.
  • [33] S. Kaewunruen, A. M. Remennikov, “Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters,” J Sound Vib, vol. 298, no. 1–2, pp 453–461, 2006.
  • [34] R. A. Clark, P. A. Dean, J. A. Elkins, and S. G. Newton, “An investigation into the dynamics effects of railway vehicles running on corrugated rails,” J Mech Eng Sci, vol. 24, pp. 65–76, 1982.
  • [35] C. Esveld, “Modern Railway Track, second ed.,” The Netherlands: MRT-Productions, 2001.
  • [36] S. Lakuši, M. Ahac, and I. Haladin, “Experimental investigation of railway track with under sleeper pad,” in 10th Slovenian road and transportation congress, Ljubljana, Slovenia, 2010, pp. 20–22
  • [37] H. Loy, “Under Sleeper Pads: Improving Track Quality while Reducing Operational Costs,” European Railway Review, vol. 4, pp. 46–51, 2008.
  • [38] S. Witt, “The influence of under sleeper pads on railway track Dynamics,” Magister dissertation, Dept. Manage. Eng., Solid Mech. Div., Linköping Univ., Linköping, Sweden, 2008
  • [39] F. N. Müller-Boruttau, V. Rosenthal, and N. Breitsamter, “Innovative ballasted track: concrete sleepers with sole pads,” WCRR. Cologne, Germany, 2001
  • [40] A. Riessberger, “Ballast track for high speeds,” Proceedings of Tracks for High-Speed Railways, Porto, Portugal, 2006, pp. 23-44
  • [41] R. Schilder, 2006. UIC Project no. I/05/U/440 USP-Under Sleeper Pads. Applications and Benefits of Elastic Elements in Ballasted Tracks UIC, Paris 17.
  • [42] F. Müller-Boruttau, U. Kleinert, “Betonschwellen mit Elastischer Sohle,” ETR, vol. 50, no. H3, pp. 90–98, 2001.
  • [43] A. Johansson, J. C. O. Nielsen, R. Bolmsvik, and A. Karlström, “Under sleeper pads – influence on dynamic train-track interaction,” Wear, vol. 265, pp. 1479–1687, 2008.
  • [44] P. Schneider, R. Bolmsvik, and J. C. O. Nielsen, “In situ performance of a ballasted railway track with under sleeper pads,” P I Mech Eng F-J Rai, vol. 225, no. 3, pp. 299–309, 2011.
  • [45] M. Krüger, 2007. Theoretical Investigations/Calculations. Work Package Number 2a of UIC Project Under Sleeper Pads. 

  • [46] S. K. Navaratnarajah, B. Indraratna, and T. N. Ngo, “Influence of Under Sleeper Pads on Ballast Behavior Under Cyclic Loading: Experimental and Numerical Studies,” J Geotech Geoenviron, vol. 144, no. 9, 04018068, 2018.
  • [47] W. Stahl, “Improvement of ballasted tracks using sleeper pads – investigations and experiences in Germany,” in Proceedings Seventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Trondheim, Norway, 2005
  • [48] J. Jenkins, S. Stephenson, G. Clayton, G. Morland, and D. L. Lyon, “Incidences des
paramètres caracteristiques de la voie et des vehicules sur les efforts dynamics verticaux qui se développent entre rail et roue,” Rail International, vol. 10, 1974. 

  • [49] UIC (International Union of Railways) USP Report, Project no. I/05/U/440, 2009
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Erdem Balcı 0000-0003-1759-1946

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 29 Ağustos 2020
Yayımlandığı Sayı Yıl 2021 Sayı: 13

Kaynak Göster

IEEE E. Balcı, “Ray Pedi ve Travers Altı Pedlerin Hat Bileşenleri ve Hat Performansı Üzerindeki Etkileri”, Demiryolu Mühendisliği, sy. 13, ss. 14–28, Ocak 2021, doi: 10.47072/demiryolu.787758.