Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye Şartlarına Uygun Vagon Seyir Direnci Formülünün Enerji Verimliliği Açısından Deneysel Olarak Belirlenmesi

Yıl 2021, Sayı: 13, 65 - 75, 31.01.2021
https://doi.org/10.47072/demiryolu.796392

Öz

Demiryolu taşıtının enerji sarfiyatına neden olan temel etken, tren hareketini negatif yönde etkileyen kuvvetler toplamı olan tren dirençleridir. Çeşitli çalışma koşullarında ortaya çıkan tren direncinin bilinmesi; ihtiyaç duyulan lokomotif çekiş kuvvetinin hesaplanması, lokomotifin güç gereksiniminin belirlenmesi, enerji tüketimi öngörüsü ve seyir süresinin belirlenmesi çalışmalarında kullanılmaktadır. Birçok ülke, sahip oldukları demiryollarında işletim sırasında ortaya çıkan seyir direncini hesaplamak için kendi formüllerini geliştirmiştir. Türkiye koşullarına en uygun vagon seyir direnci formülünün tespit edilmesi amacını taşıyan çalışmada, Türkiye demiryolları 12 farklı hat kesiminde gerçekleştirilen deneylere ilişkin veriler, bu deneyde kullanılan trenlerin özellikleri ve deneylerin uygulandığı demiryolu şartları, 24 adet vagon seyir direnci formülüne uygulanmıştır. Gerçekleştirilen hesaplamalar neticesinde ortaya çıkan tren direnci sonuçları deneysel sonuçlarla karşılaştırılmıştır. Karşılaştırmada ortaya çıkan farkların ortalamaları, çeşitli tren direnci formüllerine göre %3 ila %12 arasında değişmektedir. Buradan hareketle, denklem 22’nin en düşük sapmaya sahip olduğu belirlenmiştir. Bu formül, Türkiye demiryollarına en uygun vagon seyir direnci formülü olarak önerilmektedir.

Kaynakça

  • [1] Eurostat, “Energy statistics - an overview - Statistics Explained,” 2016. [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_statistics_-_an_overview#Final_energy_consumption. [Accessed: 16-Sep-2020].
  • [2] E. C. Schmidt, “Freight Train Resistance. Its Relation to Car Weight.,” Vol. 43 Eng. Exp. Stn. Illinois Univ. Urbana, Illinois., 1910.
  • [3] W. J. Davis, The Tractive Resistance of Electric Locomotives and Cars. Schenectady, N.Y. General Electric, 1926.
  • [4] AREMA Manual for Railway Engineering, Economics of Railway Engineering and Operation, Train Performance. American Railway Engineering and Maintenance of Way Association, 1999.
  • [5] P. Lukaszewicz, “Energy Consumption and Running Time for Trains,” Royal Institute of Technology, Stockholm, 2001.
  • [6] S. Iwnicki, Handbook of railway vehicle dynamics. Boca Raton: CRC/Taylor & Francis, 2006.
  • [7] A. Radosavljevic, “Measurement of train traction characteristics,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 3, pp. 283–291, May 2006.
  • [8] C. Newman, “5AT Advanced Steam Locomotive Project Locomotive and Train Resistance,” 2010. [Online]. Available: http://5at.co.uk/index.php/definitions/terrms-and-definitions/resistance.html#Plots. [Accessed: 17-Sep-2020].
  • [9] B. P. Rochard and F. Schmid, “A review of methods to measure and calculate train resistances,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 214, no. 4, pp. 185–199, Jul. 2000.
  • [10] F. Szanto, “Rolling Resistance Revisited,” in CORE2016 Conference on Railway Excellence RTSA, 2016.
  • [11] C. Somaschini, D. Rocchi, G. Tomasini, and P. Schito, “Simplified Estimation of Train Resistance Parameters: Full Scale Experimental Tests and Analysis,” in Proceedings of the Third International Conference on Railway Technology: Research, Deve-lopment and Maintenance, 2016.
  • [12] C. Urlu, Demiryolu Araçlarının İleri Dinamiği. Ankara: TCDD Yayınları, 1999.
  • [13] M. K. Jain, “Train, grade, curve and Acceleration Resistance | RailElectrica,” 2013. [Online]. Available: https://www.railelectrica.com/traction-mechanics/train-grade-curve-and-acceleration-resistance-2/. [Accessed: 16-Sep-2020].

Experimental Determination of Wagon Running Resistance Formula in terms of Energy Efficiency for Turkish Railway Conditions

Yıl 2021, Sayı: 13, 65 - 75, 31.01.2021
https://doi.org/10.47072/demiryolu.796392

Öz

The main factor causing the energy consumption of railway vehicle is train resistances that is the sum of the forces negatively affecting movement of the train. Knowing of the train resistances occurring in the various operating conditions is used for calculating desired locomotive tractive effort, identifying locomotive power requirement, prescience of the energy consumption and determining running time. Formulas are developed by many countries, for calculating of the running resistance that occurs during operating in the own railroads. This study has been undertaken to determine suitable train wagon running resistance formulas for the railroads in Turkey. The experimental data have been recorded over 12 line segments of the national railroad system. The characteristics of the railroad and the rolling stock sets are used to calculate the train resistance according to 24 wagon running resistance formulas. Actual measurements and calculated train resistances are compared. The averages of the differences between the calculated values and the measured values range from 3% to 12%. The formula that provides the smallest average difference is the equation 22. This formula has been recommended for the Turkish railroads wagon running resistance.

Kaynakça

  • [1] Eurostat, “Energy statistics - an overview - Statistics Explained,” 2016. [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_statistics_-_an_overview#Final_energy_consumption. [Accessed: 16-Sep-2020].
  • [2] E. C. Schmidt, “Freight Train Resistance. Its Relation to Car Weight.,” Vol. 43 Eng. Exp. Stn. Illinois Univ. Urbana, Illinois., 1910.
  • [3] W. J. Davis, The Tractive Resistance of Electric Locomotives and Cars. Schenectady, N.Y. General Electric, 1926.
  • [4] AREMA Manual for Railway Engineering, Economics of Railway Engineering and Operation, Train Performance. American Railway Engineering and Maintenance of Way Association, 1999.
  • [5] P. Lukaszewicz, “Energy Consumption and Running Time for Trains,” Royal Institute of Technology, Stockholm, 2001.
  • [6] S. Iwnicki, Handbook of railway vehicle dynamics. Boca Raton: CRC/Taylor & Francis, 2006.
  • [7] A. Radosavljevic, “Measurement of train traction characteristics,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 3, pp. 283–291, May 2006.
  • [8] C. Newman, “5AT Advanced Steam Locomotive Project Locomotive and Train Resistance,” 2010. [Online]. Available: http://5at.co.uk/index.php/definitions/terrms-and-definitions/resistance.html#Plots. [Accessed: 17-Sep-2020].
  • [9] B. P. Rochard and F. Schmid, “A review of methods to measure and calculate train resistances,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 214, no. 4, pp. 185–199, Jul. 2000.
  • [10] F. Szanto, “Rolling Resistance Revisited,” in CORE2016 Conference on Railway Excellence RTSA, 2016.
  • [11] C. Somaschini, D. Rocchi, G. Tomasini, and P. Schito, “Simplified Estimation of Train Resistance Parameters: Full Scale Experimental Tests and Analysis,” in Proceedings of the Third International Conference on Railway Technology: Research, Deve-lopment and Maintenance, 2016.
  • [12] C. Urlu, Demiryolu Araçlarının İleri Dinamiği. Ankara: TCDD Yayınları, 1999.
  • [13] M. K. Jain, “Train, grade, curve and Acceleration Resistance | RailElectrica,” 2013. [Online]. Available: https://www.railelectrica.com/traction-mechanics/train-grade-curve-and-acceleration-resistance-2/. [Accessed: 16-Sep-2020].
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Ömür Akbayır 0000-0002-8747-4238

Beytullah Başeğmez 0000-0001-5981-5317

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 17 Eylül 2020
Yayımlandığı Sayı Yıl 2021 Sayı: 13

Kaynak Göster

IEEE Ö. Akbayır ve B. Başeğmez, “Türkiye Şartlarına Uygun Vagon Seyir Direnci Formülünün Enerji Verimliliği Açısından Deneysel Olarak Belirlenmesi”, Demiryolu Mühendisliği, sy. 13, ss. 65–75, Ocak 2021, doi: 10.47072/demiryolu.796392.