Araştırma Makalesi
BibTex RIS Kaynak Göster

Ölçüm Sahasının Değişen Koşullarında Yüksek Hızlı Tren Kaynaklı Titreşimlerin Bornitz Analitik Yaklaşımına Göre Değerlendirilmesi

Yıl 2022, Sayı: 16, 153 - 169, 31.07.2022
https://doi.org/10.47072/demiryolu.1125269

Öz

Ülkemizde yüksek hızlı tren yolcu taşımacılığının trafik akış hızı maksimum 255 km/h değerine ulaşacak şekilde faaliyete geçmiştir. Söz konusu gelişmeye bağlı olarak demiryolu trafiği kaynaklı titreşim sorunlarının güzergâh boyunca öngörülememesi, mevcut araştırmaların sadece ray titreşimleri ve gürültü kirliliğinin azaltılmasına odaklanmış olması, yapılan bu çalışmayı çevresel titreşim etkilerinin sahada yerinde ölçülerek tespit edilmesine yönlendirmiştir. Yapılan bu çalışmayla, yolcu taşımacılığında kullanılan yüksek hızlı tren (YHT) geçişlerinin ölçüm sahasının değişen zemin koşullarında oluşturduğu yüzey titreşim dalgalarının yayılma biçimleri araştırılmıştır. Elde edilen deneysel ve nümerik sonuçlara bağlı olarak, YHT trenlerinin alüvyon zeminlerde oluşturduğu en büyük titreşim değerlerinin uzaklığa bağlı değişimi incelendiğinde Bornitz analitik çözümünün orantılı değişim gösterdiği ancak bu durumun deneysel ölçümler için geçerli olmadığı anlaşılmıştır. Hendekli ve hendeksiz test sahasında yapılan titreşim ölçümleri ve bu ölçümlere ait elde edilen bulguların ortaya koyduğu sonuçlar doğrultusunda hendek varlığının hızlı tren kaynaklı titreşimleri önemli oranda azalttığı söylenebilinir. Ayrıca çalışma sahasına sonradan döşenen beton parke kilit taşı özellikle demiryolu hattına yakın ölçüm noktalarındaki hızlı tren kaynaklı titreşimler üzerinde hendeğin dışında önemli oranda yalıtım etkisi göstermiştir. Çalışma kapsamında kaydedilen ölçüm sonuçlarının güvenirliliğini test etmek amacıyla mesafeye bağlı olarak regresyon analizi yapılmış ve analitik yönteme ait azalım eğrileri ile karşılaştırılmıştır. Demiryolu kaynaklı titreşimlere ait regresyon analiz sonuçlarının yüksek korelasyonlu olması kullanılan analiz yönteminin geçerliliğini göstermiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

217M427 numaralı TÜBİTAK 1001 projesi

Teşekkür

Bu çalışma, 217M427 numaralı TÜBİTAK 1001 projesinin sağladığı maddi destekle tamamlanmış olup yazarlar bu destekten dolayı TÜBİTAK’a teşekkürlerini sunarlar.

Kaynakça

  • [1] K. Adolfsson, B. Andréasson, P-E. Bengtson, A. Bodare, C. Madshus, R.Massarch, G. Wallmark, P. Zackrisson, High speed lines on soft ground. Evaluation and analyses of measurements from the West Coast Line, Technical Report, Banverket, Sweden, 1999.
  • [2] G. Degrande, L. Schillemans, “Free field vibrations during the passage of a Thalys HST at variable speed”, Journal of Sound and Vibration, 247(1), 131-144, 2001.
  • [3] Z. Zhang, F. Ma, B. Zhang, “Vibration measurement of long-span floors in high-speed railway station”, Journal of Vibroengineering, 20(7), 2705-2719, 2018.
  • [4] P. Ropars, X. Vuylsteke, E. Augis, “Vibrations induced by metro in sensitive buildings; experimental and numerical comparisons”, in: EURONOISE 2018 Conference, Heraklion, Greece, 2018, pp. 1381-1386.
  • [5] J. Yang, P. Li, Z. Lu, “Numerical Simulation and In-Situ Measurement of Ground-Borne Vibration Due to Subway System”, Sustainability, 10(7), 2439, 2018.
  • [6] W. Yan , H. Zheng, Z. Wu , T. Wan, and X. Tian, “Experimental study and numerical analysis on the vibration characteristics of a terraced slope along an embankment section of a high-speed railway”, Shock and Vibration, 2020.
  • [7] E. Çelebi, G.Schmid, “Investigation of ground vibrations induced by moving loads”, Engineering Structures, 27(24), 1981-1998, 2005.
  • [8] S.H. Ju, “Finite element analysis of structure-borne vibration from high-speed train”, Soil Dynamics and Earthquake Engineering, 27, 259-273, 2007.
  • [9] L. Auersch, “The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks”, Journal of Sound and Vibration, 310, 587-607, 2008.
  • [10] E. Çelebi, “Three-dimensional modelling of train-track and sub-soil analysis for surface vibrations due to moving loads”, Applied Mathematics and Computation, 179, 209–230, 2006.
  • [11] P. Fiala, G. Degrande, F. Augusztinovicz, “Numerical modeling of ground borne noise and vibration in buildings due to surface rail traffic”, Journal of Sound and Vibration, 301, 718-738, 2007.
  • [12] L. Auersch, “Train induced ground vibrations: different amplitude-speed relations for two layered soils”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226 (5), 469-488, 2012.
  • [13] G.Y. Gao, J. Song, J. Yang, “Identifying boundary between near field and far field in ground vibration caused by surface loading”, Journal of Central South University, 21 (8), 3284-3294, 2014.
  • [14] Z. Wang, A. Tang, D. Huang, C. Wu, Z. Huang, “A novel environmental vibration analysis system and its application in isolation of environmental vibration induced by high-speed train in Harbin frozen soil site”, Applied Acoustics, 193, 108781, 2022.
  • [15] J. Yao, R. Zhao, N. Zhang, D.Yang, “Vibration isolation effect study of in-filled trench barriers to train-induced environmental vibrations”, Soil Dynamics and Earthquake Engineering, 125, 105741, 2019.
  • [16] D.P.N. Kontoni, A.A. Farghaly, “Mitigation of train-induced vibrations on nearby high-rise buildings by open or geofoam-filled trenches”, Journal of Vibroengineering, 22 (2), 416-426, 2020.
  • [17] Y. E. Ibrahim, M. Nabil, “Finite element analysis of multistory structures subjected to train-induced vibrations considering soil-structure interaction”, Case Studies in Construction Materials, 15, e00592, 2021.
  • [18] A. Lyratzakis, Y. Tsompanakis, P. N. Psarropoulos, “Efficient mitigation of high-speed train vibrations on adjacent reinforced concrete buildings”, Construction and Building Materials, 314, 125653, 2022.
  • [19] S. Ahmad, T.M. Al-Hussaini, “Simplified design for vibration screening by open and infilled trenches”, Journal of Geotechnical Engineering, 117 (1), 67-88, 1991.
  • [20] S.H. Ju, H.T. Lin, “Experimentally investigating finite element accuracy for ground vibration induced by high-speed trains”, Engineering Structures, 30, 733-746, 2008.
  • [21] D. Macijauskas, V. B. Stefan “Propagation of harmonical vibrations in peat”, International Journal of GEOMATE, 7(2), 1101-1106, 2014.
  • [22] F. Goktepe, H.S. Kuyuk, E. Celebi, “In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank”, Earthquakes and Structures, 12 (5), 583-589, 2017.
  • [23] S.J. Yang, "Attenuation of Ground Vibration Induced by Dynamical Machinery", International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, Missouri, USA, 1981.
  • [24] D-S. Kim, J-S. Lee, “Propagation and attenuation characteristics of various ground vibrations”, Soil Dynamics and Earthquake Engineering, 19, 115–126, 2000.
  • [25] X.W. Ren, J.F. Wu, Y.Q. Tang, J.C. Yang, “Propagation and attenuation characteristics of the vibration in soft soil foundations induced by high-speed trains”, Soil Dynamics and Earthquake Engineering, 117, 374-383, 2019.
  • [26] S-H. Ju, S-H. Ni, “Determining Rayleigh damping parameters of soils for finite element analysis”, International Journal for Numerical and Analytical Methods in Geomechanics, 31, 1239–1255, 2007.
  • [27] H. Amick, M. Gendreau, “Construction vibrations and their impact on vibrationsensitive facilities”, ASCE Construction Congress 6, Orlando, 2000.
  • [28] M. Komazawa, H. Morıkawa, K. Nakamura, J. Akamatsu, K. Nıshımura, S. Sawada, A. Erken, A. Önalp, “Bedrock Structure in Adapazari, Turkey – A Possible Cause of Severe Damage by the 1999 Kocaeli Earthquake”, Soil Dynamics and Earthquake Engineering, 22, 829 – 836, 2002.
  • [29] TBDY, 2018. “Türkiye Bina Deprem Yönetmeliği” Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • [30] MGS Proje Müşavirlik Mühendislik Ticaret Ltd. Şti., 2013. “TCDD İşletmesi Genel Müdürlüğü, Sivas-Erzincan Demiryolu Projesi, Çevresel Etki Değerlendirme Başvuru Dosyası”, Ankara.
  • [31] M. Şahin, F. Göktepe, E. Çelebi, A.C. Zülfikar, O. Kırtel, “Farklı Frekans İçeriklerine Sahip Tren Geçişlerinde Oluşan Titreşim Enerjisinin Soğurulmasının Deneysel ve Analitik Olarak Değerlendirilmesi”, 8. Uluslararası Geoteknik Sempozyumu, İstanbul, Türkiye, 2019.
  • [32] M. Şahin, “Alüvyon Zemin Ortamındaki Dalga Soğurulmasının Tren Geçişleri İçin Deneysel ve Analitik Olarak Değerlendirilmesi”, Yüksek Lisans Tezi, Bartın Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Bartın, Türkiye, 2020.
  • [33] M. Naghizadehrokni, M. Ziegler, J. Sprengel, “A full experimental and numerical modelling of the practicability of thin foam barrier as vibration reduction measure”, Soil Dynamics and Earthquake Engineering, 139, 106416, 2020.
  • [34] C. Gürer, T.A. Törer, K. Aslantaş, “Yüksek Hızlı Hatlarda Granüler Alt Balast Yerine Asfalt Tabaka Kullanımının Sonlu Elemanlarla Modellenmesi”, Demiryolu Mühendisliği, 14, 39-48, 2021.

Evaluation of High-Speed Train Induced Vibrations in Different Conditions of the Measurement Site According to the Bornitz Analytical Approach

Yıl 2022, Sayı: 16, 153 - 169, 31.07.2022
https://doi.org/10.47072/demiryolu.1125269

Öz

In our country, high-speed train transportation started to serve by reaching the maximum traffic flow rate of 255 km/h. Regarding the mentioned development, because of the unpredictability of vibration problems caused by railway traffic along the route, and the existing research focusing only on reducing rail vibrations and noise pollution, this study is directed towards investigating the determination of the measurement of environmental vibration effects in the field. With this study, the propagation patterns of surface waves created by the measurement area of high-speed train (HST) crossings used in passenger transportation under changing soil conditions were investigated. Based on the experimental and numerical results obtained, when the variation of the maximum vibration values created by HST trains on alluvial soils with distance is examined, it is understood that the Bornitz analytical solution shows a proportional change, but this is not valid for experimental measurements. According to the results of the vibration measurements made with and without trench in the test area and the findings of these measurements, it can be said that the presence of the trench significantly reduces the vibrations caused by high-speed trains. In addition, the concrete block pavement, which was subsequently floored in the study area, showed a significant reduction effect on the vibrations affiliated with the high-speed train, especially at the measurement points close to the railway line, outside the trench. In order to test the reliability of the measurement results recorded within the scope of the study, regression analysis was performed depending on the distance and compared with the attenuation curves of the analytical method. The high correlation of regression analysis results of railway-induced vibrations showed the validity of the used analysis method.

Proje Numarası

217M427 numaralı TÜBİTAK 1001 projesi

Kaynakça

  • [1] K. Adolfsson, B. Andréasson, P-E. Bengtson, A. Bodare, C. Madshus, R.Massarch, G. Wallmark, P. Zackrisson, High speed lines on soft ground. Evaluation and analyses of measurements from the West Coast Line, Technical Report, Banverket, Sweden, 1999.
  • [2] G. Degrande, L. Schillemans, “Free field vibrations during the passage of a Thalys HST at variable speed”, Journal of Sound and Vibration, 247(1), 131-144, 2001.
  • [3] Z. Zhang, F. Ma, B. Zhang, “Vibration measurement of long-span floors in high-speed railway station”, Journal of Vibroengineering, 20(7), 2705-2719, 2018.
  • [4] P. Ropars, X. Vuylsteke, E. Augis, “Vibrations induced by metro in sensitive buildings; experimental and numerical comparisons”, in: EURONOISE 2018 Conference, Heraklion, Greece, 2018, pp. 1381-1386.
  • [5] J. Yang, P. Li, Z. Lu, “Numerical Simulation and In-Situ Measurement of Ground-Borne Vibration Due to Subway System”, Sustainability, 10(7), 2439, 2018.
  • [6] W. Yan , H. Zheng, Z. Wu , T. Wan, and X. Tian, “Experimental study and numerical analysis on the vibration characteristics of a terraced slope along an embankment section of a high-speed railway”, Shock and Vibration, 2020.
  • [7] E. Çelebi, G.Schmid, “Investigation of ground vibrations induced by moving loads”, Engineering Structures, 27(24), 1981-1998, 2005.
  • [8] S.H. Ju, “Finite element analysis of structure-borne vibration from high-speed train”, Soil Dynamics and Earthquake Engineering, 27, 259-273, 2007.
  • [9] L. Auersch, “The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks”, Journal of Sound and Vibration, 310, 587-607, 2008.
  • [10] E. Çelebi, “Three-dimensional modelling of train-track and sub-soil analysis for surface vibrations due to moving loads”, Applied Mathematics and Computation, 179, 209–230, 2006.
  • [11] P. Fiala, G. Degrande, F. Augusztinovicz, “Numerical modeling of ground borne noise and vibration in buildings due to surface rail traffic”, Journal of Sound and Vibration, 301, 718-738, 2007.
  • [12] L. Auersch, “Train induced ground vibrations: different amplitude-speed relations for two layered soils”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226 (5), 469-488, 2012.
  • [13] G.Y. Gao, J. Song, J. Yang, “Identifying boundary between near field and far field in ground vibration caused by surface loading”, Journal of Central South University, 21 (8), 3284-3294, 2014.
  • [14] Z. Wang, A. Tang, D. Huang, C. Wu, Z. Huang, “A novel environmental vibration analysis system and its application in isolation of environmental vibration induced by high-speed train in Harbin frozen soil site”, Applied Acoustics, 193, 108781, 2022.
  • [15] J. Yao, R. Zhao, N. Zhang, D.Yang, “Vibration isolation effect study of in-filled trench barriers to train-induced environmental vibrations”, Soil Dynamics and Earthquake Engineering, 125, 105741, 2019.
  • [16] D.P.N. Kontoni, A.A. Farghaly, “Mitigation of train-induced vibrations on nearby high-rise buildings by open or geofoam-filled trenches”, Journal of Vibroengineering, 22 (2), 416-426, 2020.
  • [17] Y. E. Ibrahim, M. Nabil, “Finite element analysis of multistory structures subjected to train-induced vibrations considering soil-structure interaction”, Case Studies in Construction Materials, 15, e00592, 2021.
  • [18] A. Lyratzakis, Y. Tsompanakis, P. N. Psarropoulos, “Efficient mitigation of high-speed train vibrations on adjacent reinforced concrete buildings”, Construction and Building Materials, 314, 125653, 2022.
  • [19] S. Ahmad, T.M. Al-Hussaini, “Simplified design for vibration screening by open and infilled trenches”, Journal of Geotechnical Engineering, 117 (1), 67-88, 1991.
  • [20] S.H. Ju, H.T. Lin, “Experimentally investigating finite element accuracy for ground vibration induced by high-speed trains”, Engineering Structures, 30, 733-746, 2008.
  • [21] D. Macijauskas, V. B. Stefan “Propagation of harmonical vibrations in peat”, International Journal of GEOMATE, 7(2), 1101-1106, 2014.
  • [22] F. Goktepe, H.S. Kuyuk, E. Celebi, “In-situ measurement of railway-traffic induced vibrations nearby the liquid-storage tank”, Earthquakes and Structures, 12 (5), 583-589, 2017.
  • [23] S.J. Yang, "Attenuation of Ground Vibration Induced by Dynamical Machinery", International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, Missouri, USA, 1981.
  • [24] D-S. Kim, J-S. Lee, “Propagation and attenuation characteristics of various ground vibrations”, Soil Dynamics and Earthquake Engineering, 19, 115–126, 2000.
  • [25] X.W. Ren, J.F. Wu, Y.Q. Tang, J.C. Yang, “Propagation and attenuation characteristics of the vibration in soft soil foundations induced by high-speed trains”, Soil Dynamics and Earthquake Engineering, 117, 374-383, 2019.
  • [26] S-H. Ju, S-H. Ni, “Determining Rayleigh damping parameters of soils for finite element analysis”, International Journal for Numerical and Analytical Methods in Geomechanics, 31, 1239–1255, 2007.
  • [27] H. Amick, M. Gendreau, “Construction vibrations and their impact on vibrationsensitive facilities”, ASCE Construction Congress 6, Orlando, 2000.
  • [28] M. Komazawa, H. Morıkawa, K. Nakamura, J. Akamatsu, K. Nıshımura, S. Sawada, A. Erken, A. Önalp, “Bedrock Structure in Adapazari, Turkey – A Possible Cause of Severe Damage by the 1999 Kocaeli Earthquake”, Soil Dynamics and Earthquake Engineering, 22, 829 – 836, 2002.
  • [29] TBDY, 2018. “Türkiye Bina Deprem Yönetmeliği” Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • [30] MGS Proje Müşavirlik Mühendislik Ticaret Ltd. Şti., 2013. “TCDD İşletmesi Genel Müdürlüğü, Sivas-Erzincan Demiryolu Projesi, Çevresel Etki Değerlendirme Başvuru Dosyası”, Ankara.
  • [31] M. Şahin, F. Göktepe, E. Çelebi, A.C. Zülfikar, O. Kırtel, “Farklı Frekans İçeriklerine Sahip Tren Geçişlerinde Oluşan Titreşim Enerjisinin Soğurulmasının Deneysel ve Analitik Olarak Değerlendirilmesi”, 8. Uluslararası Geoteknik Sempozyumu, İstanbul, Türkiye, 2019.
  • [32] M. Şahin, “Alüvyon Zemin Ortamındaki Dalga Soğurulmasının Tren Geçişleri İçin Deneysel ve Analitik Olarak Değerlendirilmesi”, Yüksek Lisans Tezi, Bartın Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Bartın, Türkiye, 2020.
  • [33] M. Naghizadehrokni, M. Ziegler, J. Sprengel, “A full experimental and numerical modelling of the practicability of thin foam barrier as vibration reduction measure”, Soil Dynamics and Earthquake Engineering, 139, 106416, 2020.
  • [34] C. Gürer, T.A. Törer, K. Aslantaş, “Yüksek Hızlı Hatlarda Granüler Alt Balast Yerine Asfalt Tabaka Kullanımının Sonlu Elemanlarla Modellenmesi”, Demiryolu Mühendisliği, 14, 39-48, 2021.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Murat Şahin 0000-0002-2915-3145

Fatih Göktepe 0000-0002-1484-623X

Erkan Çelebi 0000-0002-3526-7384

A. Can Zülfikar 0000-0001-6610-3334

Osman Kırtel 0000-0001-6451-0323

Proje Numarası 217M427 numaralı TÜBİTAK 1001 projesi
Yayımlanma Tarihi 31 Temmuz 2022
Gönderilme Tarihi 2 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 16

Kaynak Göster

IEEE M. Şahin, F. Göktepe, E. Çelebi, A. C. Zülfikar, ve O. Kırtel, “Ölçüm Sahasının Değişen Koşullarında Yüksek Hızlı Tren Kaynaklı Titreşimlerin Bornitz Analitik Yaklaşımına Göre Değerlendirilmesi”, Demiryolu Mühendisliği, sy. 16, ss. 153–169, Temmuz 2022, doi: 10.47072/demiryolu.1125269.