Araştırma Makalesi
BibTex RIS Kaynak Göster

Two-Dimensional Numerical Simulation of Temperature Distribution in Welding Process of Aluminum Alloys Used in Rail Vehicles

Yıl 2022, Sayı: 16, 91 - 101, 31.07.2022
https://doi.org/10.47072/demiryolu.1127197

Öz

In this study, a two-dimensional numerical simulator of the heat flow occurring during gas metal arc welding of EN AW 6005A T6 alloy profiles used in rail system vehicle bodies has been developed. The temperature distribution on the work piece is obtained by solving the problem of transient heat conduction, which includes the term of non-uniform moving heat sources and convection heat transfer, using the finite difference method. The aim of this study is to investigate the optimum temperature distribution that will prevent premature solidification of the liquid metal in the low temperature region of the molten pool in the welding process, by means of the developed simulation. Due to the proposed two-dimensional simulator, operating costs can be reduced by reducing the number of experiments to be carried out to obtain the optimum temperature distribution. The most obvious advantages of the developed simulator are being able to change the time step sizes, grid sizes, total simulation time, power sizes of the welds, distance between the electrodes, and speed of the welds. In addition, this simulator can be used for single-wire and tandem welding operations in different materials. Secondly, the experimental studies were carried out using Fluke Thermal Imager in Turkey Rail System Vehicles Industry Inc. (TURASAS) to verify the numerical results. The maximum temperature obtained from the numerical analysis was found to differ only 1% from the maximum temperature of the experimental result. This result shows that the proposed two-dimensional simulator is compatible with the experimental work. Finally, all Matlab codes related to the developed two-dimensional numerical simulator are included at the end of the article to facilitate the work of other researchers’ work who wants to work on the three-dimensional numerical simulation of this study.

Kaynakça

  • [1] A. Aktaş , Ö. Akbayır ve K. Aksay , "Türkiye Demiryolu Araçları, Tramvaylar ve Komponentleri Sektörünün Uluslararası Rekabet Gücü Analizi", Demiryolu Mühendisliği, sayı. 15, ss. 60-74, Oca. 2022, doi:10.47072/demiryolu.944301
  • [2] D. Chen, M. Chen, and C. Wu. "Effects of phase difference on the behavior of arc and weld pool in tandem P-GMAW," Journal of Materials Processing Technology, vol. 225, pp. 45-55, Nov. 2015, doi: 10.1016/j.jmatprotec.2015.05.022
  • [3] L. Zhang. "Investigation of arc behaviour and metal transfer in cross arc welding," Journal of Manufacturing Processes, vol. 37, pp. 124-129, Jan. 2019, doi: 10.1016/j.jmapro.2018.11.018
  • [4] H. Zargari. "Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements," International Journal of Heat and Mass Transfer, vol. 161, pp.1-14, Nov. 2020 . doi: 10.1016/j.ijheatmasstransfer.2020.120310
  • [5] T. Ueyama. "Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets." Science and Technology of Welding and Joining, vol. 10, pp. 750-759, July 2005, doi: 10.1179/174329305X68750
  • [6] K. Lee, C. Kim, and D. Kim. "High deposition rate pulse gas metal arc welding for Al 5083 thick plate." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 227, pp. 848-854, Apr. 2013, doi: 10.1177/0954405413476860
  • [7] C. Kim. "High-deposition-rate position welding of Al 5083 alloy for spherical-type liquefied natural gas tank." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, pp. 818-824, May 2015, doi: 10.1177/0954405414563553
  • [8] G. Qin, C. Feng, and H. Ma. "Suppression mechanism of weld appearance defects in tandem TIG welding by numerical modeling." Journal of Materials Research and Technology, vol. 14, pp. 160-173, Oct. 2021, doi: 10.1016/j.jmrt.2021.06.042
  • [9] G. Qin, X. Meng, and B. Fu. "High speed tandem gas tungsten arc welding process of thin stainless steel plate." Journal of Materials Processing Technology, vol. 220, pp. 58-64, Nov. 2015, doi: 10.1016/j.jmatprotec.2015.01.011
  • [10] C. Li, and A. Chen. "Numerical methods for fractional partial differential equations." International Journal of Computer Mathematics vol. 95, pp. 1048-1099, Jan. 2018, doi: 10.1080/00207160.2017.1343941
  • [11] D. Fernández, J. Hicken, and D. Zingg. "Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations." Computers & Fluids vol. 95, pp. 171-196, May 2014, doi: 10.1016/j.compfluid.2014.02.016
  • [12] D. Hawken, J. J. Gottlieb, and J. S. Hansen. "Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations." Journal of Computational Physics, vol. 95, pp. 254-302, Aug 1991, doi: 10.1016/0021-9991(91)90277-R
  • [13] Z. Wang. "A perspective on high-order methods in computational fluid dynamics." Science China Physics, Mechanics & Astronomy, vol. 59, pp. 1-6, Jan. 2016, doi: 10.1007/s11433-015-5706-3
  • [14] Z. Torabi. "Stable time integration suppresses unphysical oscillations in the bidomain model." Frontiers in Physics, vol. 2, pp. 40-49, Nov. 2014, doi: 10.3389/fphy.2014.00040
  • [15] C. Lubich, and A. Ostermann. "Linearly implicit time discretization of non-linear parabolic equations." IMA journal of numerical analysis, vol. 15, pp. 555-583, Nov. 1995, doi: 10.1093/imanum/15.4.555
  • [16] G. Golub. "Numerical methods for solving linear least squares problems." Numerische Mathematik vol. 7, pp. 206-216, May 1965, doi: 10.1007/BF01436075
  • [17] J. Tušek, I. Umek, and B. Bajcer. "Weld-cost saving accomplished by replacing single-wire submerged arc welding with triple-wire welding." Science and Technology of Welding and Joining vol. 10, pp.15-22, Jan. 2005, doi: 10.1179/174329305X24299
  • [18] T. Bajor. "The analysıs of the extrusıon process of al 6005 alloy sectıon." Journal of Chemical Technology and Metallurgy, vol. 56, pp. 637-642, Nov 2021, doi: 10.1007/s00170-011-3609-7
  • [19] G. Kanel. "Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point." Journal of Applied Physics, vol. 90, pp.136-143, July 2001, doi: 10.1063/1.1374478

Raylı Sistem Araçlarında Kullanılan Alüminyum Alaşımlarının Kaynak İşleminde Sıcaklık Dağılımının İki Boyutlu Sayısal Simülasyonu

Yıl 2022, Sayı: 16, 91 - 101, 31.07.2022
https://doi.org/10.47072/demiryolu.1127197

Öz

Bu çalışmada, raylı sistem araç gövdelerinde kullanılan EN AW 6005A T6 alaşımlı profillerin gaz altı kaynağı yapılırken meydana gelen ısı akışının iki boyutlu sayısal bir simülatörü geliştirilmiştir. İş parçası üzerinde oluşan sıcaklık dağılımı, düzgün olmayan hareketli ısı kaynakları ve taşınımla ısı transferi terimini içeren geçici ısı iletimi probleminin sonlu farklar yöntemi kullanılarak çözümlenmesiyle elde edilmiştir. Bu çalışmanın amacı, kaynak işlemindeki erimiş havuzun düşük sıcaklık bölgesinde sıvı metalin erken katılaşmasını önleyecek optimum sıcaklık dağılımını, geliştirilen simülasyon sayesinde araştırabilmektir. Önerilen iki boyutlu simülatör sayesinde, optimum sıcaklık dağılımını elde etmek için yapılacak olan deneylerin sayısı azaltılarak işletme maliyetleri düşürülebilecektir. Geliştirilen simülatörün en belirgin avantajları, zaman adımı boyutlarını, ızgara boyutlarını, toplam simülasyon süresini, kaynakların güç büyüklüklerini, elektrotlar arasındaki mesafeyi, kaynakların hızını değiştirebilmektir. Ayrıca bu simülatör, farklı malzemelerde tek telli kaynak ve tandem kaynak işlemleri için de kullanılabilir. İkinci olarak, sayısal sonuçları doğrulamak için Türkiye Raylı Sistem Araçları Sanayi A.Ş' de (TURASAS) Fluke Thermal Imager kullanılarak deneysel çalışma gerçekleştirilmiştir. Sayısal analizden elde edilen maksimum sıcaklığın, deneysel sonucun maksimum sıcaklığından sadece %1 farklı olduğu görülmüştür. Bu sonuç, önerilen iki boyutlu simülatörün, deneysel çalışma ile uyumlu olduğunu göstermektedir. Son olarak, geliştirilmiş iki boyutlu sayısal simülatör ile ilgili tüm Matlab kodları, bu çalışmanın üç boyutlu sayısal simülasyonu üzerinde çalışmak isteyen diğer araştırmacıların çalışmalarını kolaylaştırmak için makalenin sonuna eklenmiştir.

Kaynakça

  • [1] A. Aktaş , Ö. Akbayır ve K. Aksay , "Türkiye Demiryolu Araçları, Tramvaylar ve Komponentleri Sektörünün Uluslararası Rekabet Gücü Analizi", Demiryolu Mühendisliği, sayı. 15, ss. 60-74, Oca. 2022, doi:10.47072/demiryolu.944301
  • [2] D. Chen, M. Chen, and C. Wu. "Effects of phase difference on the behavior of arc and weld pool in tandem P-GMAW," Journal of Materials Processing Technology, vol. 225, pp. 45-55, Nov. 2015, doi: 10.1016/j.jmatprotec.2015.05.022
  • [3] L. Zhang. "Investigation of arc behaviour and metal transfer in cross arc welding," Journal of Manufacturing Processes, vol. 37, pp. 124-129, Jan. 2019, doi: 10.1016/j.jmapro.2018.11.018
  • [4] H. Zargari. "Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements," International Journal of Heat and Mass Transfer, vol. 161, pp.1-14, Nov. 2020 . doi: 10.1016/j.ijheatmasstransfer.2020.120310
  • [5] T. Ueyama. "Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets." Science and Technology of Welding and Joining, vol. 10, pp. 750-759, July 2005, doi: 10.1179/174329305X68750
  • [6] K. Lee, C. Kim, and D. Kim. "High deposition rate pulse gas metal arc welding for Al 5083 thick plate." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 227, pp. 848-854, Apr. 2013, doi: 10.1177/0954405413476860
  • [7] C. Kim. "High-deposition-rate position welding of Al 5083 alloy for spherical-type liquefied natural gas tank." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, pp. 818-824, May 2015, doi: 10.1177/0954405414563553
  • [8] G. Qin, C. Feng, and H. Ma. "Suppression mechanism of weld appearance defects in tandem TIG welding by numerical modeling." Journal of Materials Research and Technology, vol. 14, pp. 160-173, Oct. 2021, doi: 10.1016/j.jmrt.2021.06.042
  • [9] G. Qin, X. Meng, and B. Fu. "High speed tandem gas tungsten arc welding process of thin stainless steel plate." Journal of Materials Processing Technology, vol. 220, pp. 58-64, Nov. 2015, doi: 10.1016/j.jmatprotec.2015.01.011
  • [10] C. Li, and A. Chen. "Numerical methods for fractional partial differential equations." International Journal of Computer Mathematics vol. 95, pp. 1048-1099, Jan. 2018, doi: 10.1080/00207160.2017.1343941
  • [11] D. Fernández, J. Hicken, and D. Zingg. "Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations." Computers & Fluids vol. 95, pp. 171-196, May 2014, doi: 10.1016/j.compfluid.2014.02.016
  • [12] D. Hawken, J. J. Gottlieb, and J. S. Hansen. "Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations." Journal of Computational Physics, vol. 95, pp. 254-302, Aug 1991, doi: 10.1016/0021-9991(91)90277-R
  • [13] Z. Wang. "A perspective on high-order methods in computational fluid dynamics." Science China Physics, Mechanics & Astronomy, vol. 59, pp. 1-6, Jan. 2016, doi: 10.1007/s11433-015-5706-3
  • [14] Z. Torabi. "Stable time integration suppresses unphysical oscillations in the bidomain model." Frontiers in Physics, vol. 2, pp. 40-49, Nov. 2014, doi: 10.3389/fphy.2014.00040
  • [15] C. Lubich, and A. Ostermann. "Linearly implicit time discretization of non-linear parabolic equations." IMA journal of numerical analysis, vol. 15, pp. 555-583, Nov. 1995, doi: 10.1093/imanum/15.4.555
  • [16] G. Golub. "Numerical methods for solving linear least squares problems." Numerische Mathematik vol. 7, pp. 206-216, May 1965, doi: 10.1007/BF01436075
  • [17] J. Tušek, I. Umek, and B. Bajcer. "Weld-cost saving accomplished by replacing single-wire submerged arc welding with triple-wire welding." Science and Technology of Welding and Joining vol. 10, pp.15-22, Jan. 2005, doi: 10.1179/174329305X24299
  • [18] T. Bajor. "The analysıs of the extrusıon process of al 6005 alloy sectıon." Journal of Chemical Technology and Metallurgy, vol. 56, pp. 637-642, Nov 2021, doi: 10.1007/s00170-011-3609-7
  • [19] G. Kanel. "Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point." Journal of Applied Physics, vol. 90, pp.136-143, July 2001, doi: 10.1063/1.1374478
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Osman Ünal 0000-0003-1101-6561

Nuri Akkaş 0000-0001-7477-7777

Ahmet Taner Sarıhan 0000-0003-3833-4965

Yayımlanma Tarihi 31 Temmuz 2022
Gönderilme Tarihi 7 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 16

Kaynak Göster

IEEE O. Ünal, N. Akkaş, ve A. T. Sarıhan, “Raylı Sistem Araçlarında Kullanılan Alüminyum Alaşımlarının Kaynak İşleminde Sıcaklık Dağılımının İki Boyutlu Sayısal Simülasyonu”, Demiryolu Mühendisliği, sy. 16, ss. 91–101, Temmuz 2022, doi: 10.47072/demiryolu.1127197.