Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Solar Energy Usage Rate, Reliability, and Efficiency for Different Trips of High-Speed Train

Yıl 2022, Sayı: 16, 116 - 127, 31.07.2022
https://doi.org/10.47072/demiryolu.1128853

Öz

In this study, a statistical feasibility analysis was performed using a universally valid equation model to determine how much of the power required by the YHT65000 series high-speed train sets can be supported by solar energy systems. Calculations were made with the necessary parameters obtained from the General Directorate of Meteorology, Turkey. To find the ratio to meet this power requirement, eight different Ankara-Eskişehir / Eskişehir-Ankara trips were used, and these trips were tested by 61 different distribution functions to find the optimum model for the probability density function for each trip. The selection of the best models among these different distribution functions is presented with their error rates. This study reveals the detailed statistical characteristics of the contribution of a solar energy system to be established to support the power requirement of the high-speed train line based on specific trips.

Kaynakça

  • [1] A. Jäger-Waldau, “Snapshot of Photovoltaics—February 2020,” Energies 13, no. 4: 930. 2020. doi: /10.3390/en13040930
  • [2] M. K.l Hussien Rabaia, M. A. Abdelkareem, E. T. Sayed, K. Elsaid, K-J. Chae, T. Wilberforce, A.G. Olabi, “Environmental impacts of solar energy systems: A review,” Science of The Total Environment, Volume 754, 2021, 141989, ISSN 0048-9697. doi: 10.1016/j.scitotenv.2020.141989.
  • [3] I. M. Asanov, E. Y. Loktionov, “Possible benefits from PV modules integration in railroad linear structures,” Renewable Energy Focus, vol. 25, pp. 1-3, 2018. doi: 10.1016/j.ref.2018.02.003
  • [4] H. Kashefi, A. Sadegheih, A. Mostafaeipour, M. M. Omran, “Parameter identification of solar cells and fuel cell using improved social spider algorithm,” COMPEL, vol. 40, pp. 142-172, 2020. doi: 10.1108/COMPEL-12-2019-0495
  • [5] M. S. Vasisht, C. Vishal, J. Srinivasan, S. K. Ramasesha, “Solar photovoltaic assistance for LHB rail coaches,” Current Science, vol. 107, pp. 255-259, 2014. doi: 10.18520/cs/v107/i2/255-259
  • [6] M. Gangwar, S. M. Sharma, “Evaluating choice of traction option for a sustainable Indian Railways,” Transportation Research Part D: Transport and Environment, vol. 33, pp. 135-145, 2014. doi: 10.1016/j.trd.2014.08.025
  • [7] A. Ajay Mate, V.P. Katekar, C.H.S. Bhatkulkar, “Performance Investigation of Solar Still for Batteries of Railway Engine, Indian Railways, at Ajni Loco Shed, Nagpur,” International Conference on Advances in Thermal Systems, Materials and Design Engineering (ATSMDE2017) doi: 10.2139/ssrn.3101405
  • [8] M. K. Darshana, K. Karnataki, G. Shankar, K. R. Sheela, “A practical implementation of energy harvesting, monitoring and analysis system for solar photo voltaic terrestrial vehicles in Indian scenarios: A case of pilot implementation in the Indian Railways,” 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), IEEE, 2015, pp. 842-845. doi: 10.1109/WIECON-ECE.2015.7443989
  • [9] M. S. Vasisht, G. A. Vashista, J. Srinivasan, S. K. Ramasesha, “Rail coaches with rooftop solar photovoltaic systems: A feasibility study,” Energy, vol. 118, pp. 684-691, 2017. doi: 10.1016/j.energy.2016.10.103
  • [10] M. Trentini, “Photovoltaic systems for railways in Italy,” Tenth EC Photovoltaic solar energy conference, Springer, 1991, pp. 826-829. doi: 10.1007/978-94-011-3622-8_211
  • [11] Z. Chen, M. Jiang, L. Qi, W. Wei, Z.Yu, W. Wei, X.Yu, J.Yan, “Using existing infrastructures of high-speed railways for photovoltaic electricity generation,” Resources, Conservation and Recycling, Volume 178,2022, 106091, ISSN 0921-3449. doi: 10.1016/j.resconrec.2021.106091
  • [12] E. Rohollahi, M. Abdolzadeh, M. A. Mehrabian, “Prediction of the power generated by photovoltaic cells fixed on the roof of a moving passenger coach: a case study,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 229, pp. 830-837, 2015. doi: 10.1177/0954409714524749
  • [13] S. H. I. Jaffery, M. Khan, L. Ali, H. A. Khan, R. A. Mufti, A. Khan, N. Khan, S. M. Jaffery, “The potential of solar powered transportation and the case for solar powered railway in Pakistan,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 270-276, 2014. doi: 10.1016/j.rser.2014.07.025
  • [14] T. Igarashi, T. Kumano, H. Hayashiya, T. Takino, “Efficiency improvement of rooftop photovoltaic system at railway station,” Journal of International Council on Electrical Engineering, vol. 7, pp. 41-50, 2017. doi: 10.1080/22348972.2016.1229917
  • [15] C. Tao, D. Shanxu, C. Changsong, “Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement,” 2nd International Symposium on Power Electronics for Distributed Generation Systems, IEEE, 2010, pp. 773-777. doi: 10.1109/PEDG.2010.5545754
  • [16] X. Shen, H. Wei, L. Wei, “Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line,” Applied Energy, vol. 260, pp. 114177, 2020. doi: 10.1016/j.apenergy.2019.114177
  • [17] L. Jia, J. Ma, P. Cheng, Y. Liu, “A perspective on solar energy-powered road and rail transportation in China,” CSEE Journal of Power and Energy Systems, vol. 6, pp. 760-771, Oct. 2020. doi: 10.17775/CSEEJPES.2020.02040
  • [18] N. Ghadami, M. Gheibi, Z. Kian, M. G. Faramarz, R. Naghedi, M. Eftekhari, A. M. Fathollahi-Fard, M. A. Dulebenets, G. Tian, “Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods,” Sustainable Cities and Society, vol. 74, pp:103149, Nov. 2021. doi: 10.1016/j.scs.2021.103149
  • [19] R. Blaga, A. Sabadus, N. Stefu, C. Dughir, M. Paulescu, V. Badescu, “A current perspective on the accuracy of incoming solar energy forecasting,” Progress in energy and combustion science, vol. 70, pp.119-144, Jan. 2019. doi: 10.1016/j.pecs.2018.10.003
  • [20] Ş. D. Cîrstea, C. S. Martiş, A. Cîrstea, A. Constantinescu-Dobra, M. T. Fülöp, “Current situation and future perspectives of the Romanian renewable energy,” Energies, vol.11, pp.3289, Dec. 2018. doi: 10.3390/en11123289
  • [21] A. Mehedintu, G. Soava, M. Sterpu, E. Grecu “Evolution and Forecasting of the Renewable Energy Consumption in the Frame of Sustainable Development: EU vs. Romania,” Sustainability, vol. 13, pp. 10327, Jan. 2021. doi: 10.3390/su131810327
  • [22] O. Ostapchuk, M. Kuznietsov, V. Kuznetsov, V. Kuznetsov, “Problems of the use of renewable energy sources in the structure of railway power supply,” IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 985, Nov. 2020, pp. 012011. doi: 10.1088/1757-899X/985/1/012011
  • [23] M. U. Afzaal, I. A. Sajjad, A. B. Awan, K. N. Paracha, M. F. Khan, A. R. Bhatti, M. Zubair M, W. U. Rehman, S. Amin, S. S. Haroon, R. Liaqat, “Probabilistic generation model of solar irradiance for grid connected photovoltaic systems using weibull distribution,” Sustainability, vol.12, pp. 2241, Mar. 2020. doi: 10.3390/su12062241
  • [24] T.R. Ayodele, “Determination of probability distribution function for modelling global solar radiation: case study of Ibadan, Nigeria,” International Journal of Applied Science and Engineering, vol.13, pp. 233-245, Sep. 2015. doi: 10.6703/IJASE.2015.13(3).233
  • [25] M. Wahbah, T. H. El-Fouly, B. Zahawi, S. Feng, “Hybrid beta-KDE model for solar irradiance probability density estimation,” IEEE Transactions on Sustainable Energy, vol. 11, pp. 1110-1113, Apr. 2019. doi: 10.1109/TSTE.2019.2912706
  • [26] S. X. Chen, H. B. Gooi, M. Q. Wang, “Sizing of Energy Storage for Microgrids,” IEEE Transactions on Smart Grid, vol. 3, pp. 142-151, 2012. doi: 10.1109/TSG.2011.2160745
  • [27] Ü. Başaran Filik, T. Filik, Ö. N. Gerek, “A hysteresis model for fixed and sun tracking solar PV power generation systems,” Energies, vol. 11, pp. 603, 2018. doi: 10.3390/en11030603
  • [28] Enerji Atlası, “Yüksek Hızlı Tren Elektrik Tüketimi Yirmibin Konuta Eşdeğer,” [Online]. Available: https://www.enerjiatlasi.com/haber/yuksek-hizli-tren-elektrik-tuketimi-yirmibin-konuta-esdeger [Accessed: 06-Jul-2022].
  • [29] F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,” Journal of the American statistical Association, vol. 46, pp. 68-78, 1951. doi: 10.1080/01621459.1951.10500769
  • [30] A. K. Gupta, S. Nadarajah, “Handbook of beta distribution and its applications,” CRC press, 2004. doi: 10.1201/9781482276596
  • [31] T. Soukissian, “Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution,” Applied Energy, vol. 111, pp. 982-1000, 2013. doi: 10.1016/j.apenergy.2013.06.050
  • [32] V. P. Singh, “Three-Parameter Log-Logistic Distribution,” Entropy-Based Parameter Estimation in Hydrology, Springer, pp. 297-311, 1998. doi: 10.1007/978-94-017-1431-0_18
  • [33] R. W. Hamming, “On the distribution of numbers,” The Bell System Technical Journal, vol. 49, pp. 1609-1625, 1970. doi: 10.1002/j.1538-7305.1970.tb04281.x

Yüksek Hızlı Trenin Farklı Seferlerinde Güneş Enerjisi Kullanım Oranı, Güvenilirliği ve Verimliliğinin Belirlenmesi

Yıl 2022, Sayı: 16, 116 - 127, 31.07.2022
https://doi.org/10.47072/demiryolu.1128853

Öz

Bu çalışmada, YHT65000 serisi yüksek hızlı tren setlerinin ihtiyaç duyduğu gücün ne kadarının güneş enerjisi sistemleri ile desteklenebileceğini belirlemek için evrensel olarak geçerli bir denklem modeli kullanılarak istatistiksel bir fizibilite analizi yapılmıştır. Hesaplamalar Meteoroloji Genel Müdürlüğü'nden temin edilen gerekli parametreler ile yapılmıştır. Bu güç ihtiyacını karşılayacak oranı bulmak için sekiz farklı Ankara-Eskişehir / Eskişehir-Ankara seferi kullanılmış ve bu seferler 61 farklı dağılım fonksiyonu ile test edilerek her bir sefer için olasılık yoğunluk fonksiyonu için optimum model bulunmuştur. Bu farklı dağılım fonksiyonları arasından en iyi modellerin seçimi hata oranları ile birlikte sunulmuştur. Bu çalışma, yüksek hızlı tren hattının belirli seferlere dayalı güç ihtiyacını desteklemek için kurulacak bir güneş enerjisi sisteminin katkısının detaylı istatistiksel özelliklerini ortaya koymaktadır.

Kaynakça

  • [1] A. Jäger-Waldau, “Snapshot of Photovoltaics—February 2020,” Energies 13, no. 4: 930. 2020. doi: /10.3390/en13040930
  • [2] M. K.l Hussien Rabaia, M. A. Abdelkareem, E. T. Sayed, K. Elsaid, K-J. Chae, T. Wilberforce, A.G. Olabi, “Environmental impacts of solar energy systems: A review,” Science of The Total Environment, Volume 754, 2021, 141989, ISSN 0048-9697. doi: 10.1016/j.scitotenv.2020.141989.
  • [3] I. M. Asanov, E. Y. Loktionov, “Possible benefits from PV modules integration in railroad linear structures,” Renewable Energy Focus, vol. 25, pp. 1-3, 2018. doi: 10.1016/j.ref.2018.02.003
  • [4] H. Kashefi, A. Sadegheih, A. Mostafaeipour, M. M. Omran, “Parameter identification of solar cells and fuel cell using improved social spider algorithm,” COMPEL, vol. 40, pp. 142-172, 2020. doi: 10.1108/COMPEL-12-2019-0495
  • [5] M. S. Vasisht, C. Vishal, J. Srinivasan, S. K. Ramasesha, “Solar photovoltaic assistance for LHB rail coaches,” Current Science, vol. 107, pp. 255-259, 2014. doi: 10.18520/cs/v107/i2/255-259
  • [6] M. Gangwar, S. M. Sharma, “Evaluating choice of traction option for a sustainable Indian Railways,” Transportation Research Part D: Transport and Environment, vol. 33, pp. 135-145, 2014. doi: 10.1016/j.trd.2014.08.025
  • [7] A. Ajay Mate, V.P. Katekar, C.H.S. Bhatkulkar, “Performance Investigation of Solar Still for Batteries of Railway Engine, Indian Railways, at Ajni Loco Shed, Nagpur,” International Conference on Advances in Thermal Systems, Materials and Design Engineering (ATSMDE2017) doi: 10.2139/ssrn.3101405
  • [8] M. K. Darshana, K. Karnataki, G. Shankar, K. R. Sheela, “A practical implementation of energy harvesting, monitoring and analysis system for solar photo voltaic terrestrial vehicles in Indian scenarios: A case of pilot implementation in the Indian Railways,” 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), IEEE, 2015, pp. 842-845. doi: 10.1109/WIECON-ECE.2015.7443989
  • [9] M. S. Vasisht, G. A. Vashista, J. Srinivasan, S. K. Ramasesha, “Rail coaches with rooftop solar photovoltaic systems: A feasibility study,” Energy, vol. 118, pp. 684-691, 2017. doi: 10.1016/j.energy.2016.10.103
  • [10] M. Trentini, “Photovoltaic systems for railways in Italy,” Tenth EC Photovoltaic solar energy conference, Springer, 1991, pp. 826-829. doi: 10.1007/978-94-011-3622-8_211
  • [11] Z. Chen, M. Jiang, L. Qi, W. Wei, Z.Yu, W. Wei, X.Yu, J.Yan, “Using existing infrastructures of high-speed railways for photovoltaic electricity generation,” Resources, Conservation and Recycling, Volume 178,2022, 106091, ISSN 0921-3449. doi: 10.1016/j.resconrec.2021.106091
  • [12] E. Rohollahi, M. Abdolzadeh, M. A. Mehrabian, “Prediction of the power generated by photovoltaic cells fixed on the roof of a moving passenger coach: a case study,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 229, pp. 830-837, 2015. doi: 10.1177/0954409714524749
  • [13] S. H. I. Jaffery, M. Khan, L. Ali, H. A. Khan, R. A. Mufti, A. Khan, N. Khan, S. M. Jaffery, “The potential of solar powered transportation and the case for solar powered railway in Pakistan,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 270-276, 2014. doi: 10.1016/j.rser.2014.07.025
  • [14] T. Igarashi, T. Kumano, H. Hayashiya, T. Takino, “Efficiency improvement of rooftop photovoltaic system at railway station,” Journal of International Council on Electrical Engineering, vol. 7, pp. 41-50, 2017. doi: 10.1080/22348972.2016.1229917
  • [15] C. Tao, D. Shanxu, C. Changsong, “Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement,” 2nd International Symposium on Power Electronics for Distributed Generation Systems, IEEE, 2010, pp. 773-777. doi: 10.1109/PEDG.2010.5545754
  • [16] X. Shen, H. Wei, L. Wei, “Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line,” Applied Energy, vol. 260, pp. 114177, 2020. doi: 10.1016/j.apenergy.2019.114177
  • [17] L. Jia, J. Ma, P. Cheng, Y. Liu, “A perspective on solar energy-powered road and rail transportation in China,” CSEE Journal of Power and Energy Systems, vol. 6, pp. 760-771, Oct. 2020. doi: 10.17775/CSEEJPES.2020.02040
  • [18] N. Ghadami, M. Gheibi, Z. Kian, M. G. Faramarz, R. Naghedi, M. Eftekhari, A. M. Fathollahi-Fard, M. A. Dulebenets, G. Tian, “Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods,” Sustainable Cities and Society, vol. 74, pp:103149, Nov. 2021. doi: 10.1016/j.scs.2021.103149
  • [19] R. Blaga, A. Sabadus, N. Stefu, C. Dughir, M. Paulescu, V. Badescu, “A current perspective on the accuracy of incoming solar energy forecasting,” Progress in energy and combustion science, vol. 70, pp.119-144, Jan. 2019. doi: 10.1016/j.pecs.2018.10.003
  • [20] Ş. D. Cîrstea, C. S. Martiş, A. Cîrstea, A. Constantinescu-Dobra, M. T. Fülöp, “Current situation and future perspectives of the Romanian renewable energy,” Energies, vol.11, pp.3289, Dec. 2018. doi: 10.3390/en11123289
  • [21] A. Mehedintu, G. Soava, M. Sterpu, E. Grecu “Evolution and Forecasting of the Renewable Energy Consumption in the Frame of Sustainable Development: EU vs. Romania,” Sustainability, vol. 13, pp. 10327, Jan. 2021. doi: 10.3390/su131810327
  • [22] O. Ostapchuk, M. Kuznietsov, V. Kuznetsov, V. Kuznetsov, “Problems of the use of renewable energy sources in the structure of railway power supply,” IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 985, Nov. 2020, pp. 012011. doi: 10.1088/1757-899X/985/1/012011
  • [23] M. U. Afzaal, I. A. Sajjad, A. B. Awan, K. N. Paracha, M. F. Khan, A. R. Bhatti, M. Zubair M, W. U. Rehman, S. Amin, S. S. Haroon, R. Liaqat, “Probabilistic generation model of solar irradiance for grid connected photovoltaic systems using weibull distribution,” Sustainability, vol.12, pp. 2241, Mar. 2020. doi: 10.3390/su12062241
  • [24] T.R. Ayodele, “Determination of probability distribution function for modelling global solar radiation: case study of Ibadan, Nigeria,” International Journal of Applied Science and Engineering, vol.13, pp. 233-245, Sep. 2015. doi: 10.6703/IJASE.2015.13(3).233
  • [25] M. Wahbah, T. H. El-Fouly, B. Zahawi, S. Feng, “Hybrid beta-KDE model for solar irradiance probability density estimation,” IEEE Transactions on Sustainable Energy, vol. 11, pp. 1110-1113, Apr. 2019. doi: 10.1109/TSTE.2019.2912706
  • [26] S. X. Chen, H. B. Gooi, M. Q. Wang, “Sizing of Energy Storage for Microgrids,” IEEE Transactions on Smart Grid, vol. 3, pp. 142-151, 2012. doi: 10.1109/TSG.2011.2160745
  • [27] Ü. Başaran Filik, T. Filik, Ö. N. Gerek, “A hysteresis model for fixed and sun tracking solar PV power generation systems,” Energies, vol. 11, pp. 603, 2018. doi: 10.3390/en11030603
  • [28] Enerji Atlası, “Yüksek Hızlı Tren Elektrik Tüketimi Yirmibin Konuta Eşdeğer,” [Online]. Available: https://www.enerjiatlasi.com/haber/yuksek-hizli-tren-elektrik-tuketimi-yirmibin-konuta-esdeger [Accessed: 06-Jul-2022].
  • [29] F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,” Journal of the American statistical Association, vol. 46, pp. 68-78, 1951. doi: 10.1080/01621459.1951.10500769
  • [30] A. K. Gupta, S. Nadarajah, “Handbook of beta distribution and its applications,” CRC press, 2004. doi: 10.1201/9781482276596
  • [31] T. Soukissian, “Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution,” Applied Energy, vol. 111, pp. 982-1000, 2013. doi: 10.1016/j.apenergy.2013.06.050
  • [32] V. P. Singh, “Three-Parameter Log-Logistic Distribution,” Entropy-Based Parameter Estimation in Hydrology, Springer, pp. 297-311, 1998. doi: 10.1007/978-94-017-1431-0_18
  • [33] R. W. Hamming, “On the distribution of numbers,” The Bell System Technical Journal, vol. 49, pp. 1609-1625, 1970. doi: 10.1002/j.1538-7305.1970.tb04281.x
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Mehmet Fidan 0000-0003-2883-9863

Mine Sertsöz 0000-0003-1641-9191

Yayımlanma Tarihi 31 Temmuz 2022
Gönderilme Tarihi 10 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 16

Kaynak Göster

IEEE M. Fidan ve M. Sertsöz, “Determination of Solar Energy Usage Rate, Reliability, and Efficiency for Different Trips of High-Speed Train”, Demiryolu Mühendisliği, sy. 16, ss. 116–127, Temmuz 2022, doi: 10.47072/demiryolu.1128853.