Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Lokomotif Sistemlerinde Cer Transformatörü ve Baraların Oluşturduğu Manyetik Alanların Sonlu Elemanlar Yöntemi ile Hesaplanması

Yıl 2023, Sayı: 17, 54 - 65, 31.01.2023
https://doi.org/10.47072/demiryolu.1175771

Öz

Güç sistemi ekipmanlarının etrafında oluşturduğu manyetik alan yoğunluğunun insan sağlığı üzerine olan etkileri çeşitli kuruluşlar tarafından incelenmektedir. İnsanların güç sistemi ekipmanlarının şebeke frekansında oluşturduğu manyetik alan yoğunluğuna maruz kalması durumunda izin verilen sınır değerler International Commission on Non‐Ionizing Radiation Protection (ICNIRP) tarafından belirlenmiştir. Buna göre kamuya açık alanlar ve çalışma ortamları için izin verilen en yüksek manyetik alan yoğunluğu değerleri sırası ile 0,2mT ve 1mT olarak belirtilmiştir. Bu kapsamda lokomotiflerde cer gücünü sağlamak için kullanılan cer transformatörü, bara, sürücü ve motor gibi elemanların oluşturduğu manyetik alan yoğunluklarının önemli bir parametre olduğu görülmektedir. Bu bileşenlerin etrafında oluşan manyetik alan yoğunluklarının yolcuların ve personelin sağlığı için belirlenen sınırların altında kalması önerilmektedir. Bu sebepten dolayı lokomotif sistemlerinin tasarımı aşamasında bileşenlerin etrafında oluşan manyetik alan yoğunluklarının belirlenmesi gerekmektedir. Bu çalışma kapsamında lokomotiflerde kullanılmakta olan bir cer transformatörünün ve örnek bir bara yapısının oluşturduğu manyetik alan yoğunluklarının hesaplanması hedeflenmiştir. Bu amaç ile cer transformatörü, basit bir lokomotif kasası ve bara yapısının geometrik modeli üç boyutlu koordinat sisteminde oluşturulmuş ve Ansys Electronics Suite sonlu elemanlar analizi yazılımına aktarılıp analiz çalışmaları gerçekleştirilmiştir. Analiz sonuçlarına göre belirlenen ölçüm düzlemlerinde manyetik alan yoğunluklarının sınır değerlerin altında kaldığı görülmektedir. Manyetik alan yoğunluğu değerleri modelin geometrik yapısına, malzeme parametrelerine ve işletme durumuna bağlı olarak değiştiğinden dolayı bu analizlerin tasarım aşamasında değerlendirilmesinin gerekliliği çalışma kapsamında vurgulanmıştır.

Teşekkür

Bu çalışmada kullanılan transformatör ve lokomotif modellerinin hazırlanması aşamasında sağladığı katkılarından dolayı Sönmez Transformatör Sanayi ve Ticaret A.Ş.’ye teşekkür ederiz.

Kaynakça

  • [1] S. Çürükova, Y. B. Demirol, O. Sönmez, M. A. Çınar, and B. Alboyacı, “Cer transformatörlerinde elektriksel parametrelerin sonlu elemanlar yöntemi ile analizi,” Demiryolu Mühendisliği, no. 16, pp. 66–78, 2022, doi: 10.47072/demiryolu.1110515.
  • [2] N. Polater, P. Tricoli, “Technical review of traction drive systems for light railways”, Energies, vol. 15, no. 9, pp. 1-26, 2022.
  • [3] D. Kusiak, “The Magnetic field and impedances in three phase rectangular busbars with a finite length,” Energies, vol. 12, no. 8, pp. 1–20, 2019.
  • [4] T. Keikko, J. Kotiniitty, and L. Korpinen, “Calculations of magnetic fields from indoor distribution substation bus bars,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2000, vol. 4, pp. 2309–2314, doi: 10.1109/pess.2000.867351.
  • [5] Y. B. Demirol, M. A. Çınar, B. Alboyacı, “Evaluation of cable and busbar system in multiconductor distribution systems in terms of current and magnetic field distributions”, Turkish J. Electr. Eng. Comput. Sci., vol. 29, no. 7, pp. 3119–3132, 2021, doi:10.3906/elk-2103-108
  • [6] S. Nikolovski, Z. Klaić, Z. Kraus, and M. Stojkov, “Computation and measurement of electromagnetic fields in high voltage transformer substations,” MIPRO 2010 - 33rd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. Proc., no. April, pp. 641–646, 2010.
  • [7] S. Graubner, D. Filistovich, S. Hiebel, R. Wengerter, “Practical examples of magnetic field measurements in industrial and environmental surroundings” 2015. [Online]. Available: https://www.sekels.de/fileadmin/PDF/Englisch/45_3_Magnetic_Field_Measurement__Publication_.pdf [Accessed: 31 October 2022]
  • [8] G. Apaydin and S. S. Seker, “Theoretical and Experimental Study of Electromagnetic Fields Around High Power Transformer,” in 2nd International Conference on Electrical and Electronics Engineering, 2021, pp. 1–4, [Online]. Available: https://www.emo.org.tr/ekler/14d37f84c3f41a6_ek.pdf.
  • [9] L. Štrac, F. Kelemen, and D. Žarko, “Modeling and calculation of electromagnetic field in the surroundings of a large power transformer,” Turkish J. Electr. Eng. Comput. Sci., vol. 17, no. 3, pp. 301–314, 2009, doi: 10.3906/elk-0908-182.
  • [10] I. Sitar, Z. Janic, and B. Cucic, “External magnetic field density of main traction transformer for EMU,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 31, no. 2, pp. 716–725, 2012, doi: 10.1108/03321641211200680.
  • [11] Z. Fei, T. Konefal, and R. Armstrong, “AC railway electrification systems-An EMC perspective,” IEEE Electromagn. Compat. Mag., vol. 8, no. 4, pp. 62–69, 2019, doi: 10.1109/MEMC.2019.8985603.
  • [12] G. Lucca and M. Moro, “Environmental 50Hz magnetic field produced by a railway line equipped with autotransformers,” IEEE Int. Symp. Electromagn. Compat., 2008, doi: 10.1109/EMCEUROPE.2008.4786794.
  • [13] G. Lucca, M. Moro, R. Florio, and G. Lidonnici, “Measurements and calculations of 50Hz magnetic field produced by Italian High Speed Railway system,” IEEE Int. Symp. Electromagn. Compat., pp. 10–15, 2012, doi: 10.1109/EMCEurope.2012.6396900.
  • [14] C. Buccella and M. Feliziani, “Three dimensional magnetic field computation inside a high speed train with a.c. electrification,” IEEE International Symposium on Electromagnetic Compatibility., pp. 1-4, 2003, doi: 10.1109/icsmc2.2003.1428334.
  • [15] M. Ö. Baştürk, V. Yüksel, Y. E. Tetik, M. Yılmaz, M. Güner, and T. Kaya, “Detection of Pantograph Horn Defects Based on Deep Learning and Image Processing,” Demiryolu Mühendisliği, no. 16, pp. 102–115, 2022, doi: 10.47072/demiryolu.1132123.
  • [16] Z. Dai, T. Li, N. Zhou, J. Zhang, and W. Zhang, “Numerical simulation and optimization of aerodynamic uplift force of a high-speed pantograph,” Railw. Eng. Sci., vol. 30, no. 1, pp. 117–128, 2022, doi: 10.1007/s40534-021-00258-7.
  • [17] G. Wu et al., “Pantograph–catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks,” Railw. Eng. Sci., 2022, doi: 10.1007/s40534-022-00281-2.
  • [18] G. Wu, W. Wei, G. Gao, J. Wu, and Y. Zhou, “Evolution of the electrical contact of dynamic pantograph–catenary system,” J. Mod. Transp., vol. 24, no. 2, pp. 132–138, 2016, doi: 10.1007/s40534-016-0099-1.
  • [19] “International Commission on Non-Ionizing Radiation Protection: ICNIRP Guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz–100kHz).,” Heal. Phys., vol. 99, no. 6, pp. 818–836, 2010.
  • [20] M. N. Bates, “Extremely low frequency electromagnetic fields and cancer: The epidemiologic evidence,” Environmental Health Perspectives, vol. 95. pp. 147–156, 1991, doi: 10.1289/ehp.9195147.
  • [21] J. Grellier, P. Ravazzani, and E. Cardis, “Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe,” Environ. Int., vol. 62, pp. 55–63, 2014, doi: 10.1016/j.envint.2013.09.017.
  • [22] M. W. Khan, J. Juutilainen, and P. Roivainen, “Registry of Buildings With Transformer Stations as a Basis for Epidemiological Studies on Health Effects of Extremely Low-Frequency Magnetic Fields,” Bioelectromagnetics, vol. 41, no. 1, pp. 34–40, 2020, doi: 10.1002/bem.22228.
  • [23] SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks: Potential Health Effects of Exposure to Electromagnetic Fields (EMF).,January. 2015.
  • [24] J. Bernhardt, “The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 MHz,” Radiat. Environ. Biophys., vol. 16, no. 4, pp. 309–323, 1979, doi: 10.1007/BF01340569.
  • [25] “IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Std C95.1-2005 (Revision IEEE Std C95.1-1991), vol. 2005, no. April, pp. 1–238, 2006.
  • [26] S. Ozen, E. G. Ogel, and S. Helhel, “Residential area medium voltage power lines; public health, and electric and magnetic field levels,” Gazi Univ. J. Sci., vol. 26, no. 4, pp. 573–578, 2013.
  • [27] S. Ozen, H. F. Carlak, O. H. Colak, and S. Helhel, “Magnetic field risk analysis for employees and patients due to power transformers in hospital buildings,” Prog. Electromagn. Res. Symp., pp. 1743–1746, 2017, doi: 10.1109/PIERS.2017.8262031.
  • [28] O. Bottauscio, E. Carpaneto, M. Chiampi, D. Chiarabaglio, and I. Panaitescu, “Numerical and experimental evaluation of magnetic field generated by power busbar systems,” IEE Proc. Gener. Transm. Distrib., vol. 143, no. 5, pp. 455–460, 1996, doi: 10.1049/ip-gtd:19960557.
  • [29] S. V. Kulkarni and S. A. Khaparde, Transformer Engineering Design, Technology, and Diagnostics. 2004.
  • [30] Demiryolu uygulamaları - Trenlerdeki cer transformatörleri ve indüktörler, TS EN 60310, 09.12.2016
  • [31] Demiryolu ortamlarındaki elektrikli ve elektronik sistemlerden kaynaklanan insanların maruz kaldığı manyetik alan seviyelerinin ölçülmesi, TS EN 50500, 19.01.2010

Calculation of Magnetic Fields Generated by Traction Transformers and Busbars in Electric Locomotive Systems by Finite Element Method

Yıl 2023, Sayı: 17, 54 - 65, 31.01.2023
https://doi.org/10.47072/demiryolu.1175771

Öz

The effects of the magnetic field intensity created around the power system equipment on human health are examined by various organizations. Permissible limit values have been determined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) when people are exposed to the magnetic field intensity generated by the power system equipment at a low frequency. Accordingly, the maximum allowable magnetic field intensity values for public areas and working environments are specified as 0.2mT and 1mT, respectively. In this context, it is seen that the magnetic field intensity generated by components such as traction transformer, busbar, driver, and motor used to provide traction power in locomotives are essential parameters. Therefore, it is recommended that the magnetic field intensities around these components remain below the limits for the health of passengers and personnel. For this reason, it is necessary to determine the magnetic field intensities around the components during the design phase of the locomotive systems. This study aimed to calculate the magnetic field densities generated by a traction transformer and a sample busbar structure used in locomotives. For this purpose, the geometric model of the traction transformer, a simple locomotive casing, and busbar structure was created in a three-dimensional coordinate system and transferred to the Ansys Electronics Suite finite element analysis software, and analysis studies were carried out. Finally, it is seen that the magnetic field intensities in the measurement planes determined according to the analysis results are below the limit values. Since the magnetic field intensity values change depending on the geometric structure of the model, material parameters, and operational status, the necessity of evaluating these analyses at the design stage has been emphasized within the scope of the study.

Kaynakça

  • [1] S. Çürükova, Y. B. Demirol, O. Sönmez, M. A. Çınar, and B. Alboyacı, “Cer transformatörlerinde elektriksel parametrelerin sonlu elemanlar yöntemi ile analizi,” Demiryolu Mühendisliği, no. 16, pp. 66–78, 2022, doi: 10.47072/demiryolu.1110515.
  • [2] N. Polater, P. Tricoli, “Technical review of traction drive systems for light railways”, Energies, vol. 15, no. 9, pp. 1-26, 2022.
  • [3] D. Kusiak, “The Magnetic field and impedances in three phase rectangular busbars with a finite length,” Energies, vol. 12, no. 8, pp. 1–20, 2019.
  • [4] T. Keikko, J. Kotiniitty, and L. Korpinen, “Calculations of magnetic fields from indoor distribution substation bus bars,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2000, vol. 4, pp. 2309–2314, doi: 10.1109/pess.2000.867351.
  • [5] Y. B. Demirol, M. A. Çınar, B. Alboyacı, “Evaluation of cable and busbar system in multiconductor distribution systems in terms of current and magnetic field distributions”, Turkish J. Electr. Eng. Comput. Sci., vol. 29, no. 7, pp. 3119–3132, 2021, doi:10.3906/elk-2103-108
  • [6] S. Nikolovski, Z. Klaić, Z. Kraus, and M. Stojkov, “Computation and measurement of electromagnetic fields in high voltage transformer substations,” MIPRO 2010 - 33rd Int. Conv. Inf. Commun. Technol. Electron. Microelectron. Proc., no. April, pp. 641–646, 2010.
  • [7] S. Graubner, D. Filistovich, S. Hiebel, R. Wengerter, “Practical examples of magnetic field measurements in industrial and environmental surroundings” 2015. [Online]. Available: https://www.sekels.de/fileadmin/PDF/Englisch/45_3_Magnetic_Field_Measurement__Publication_.pdf [Accessed: 31 October 2022]
  • [8] G. Apaydin and S. S. Seker, “Theoretical and Experimental Study of Electromagnetic Fields Around High Power Transformer,” in 2nd International Conference on Electrical and Electronics Engineering, 2021, pp. 1–4, [Online]. Available: https://www.emo.org.tr/ekler/14d37f84c3f41a6_ek.pdf.
  • [9] L. Štrac, F. Kelemen, and D. Žarko, “Modeling and calculation of electromagnetic field in the surroundings of a large power transformer,” Turkish J. Electr. Eng. Comput. Sci., vol. 17, no. 3, pp. 301–314, 2009, doi: 10.3906/elk-0908-182.
  • [10] I. Sitar, Z. Janic, and B. Cucic, “External magnetic field density of main traction transformer for EMU,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 31, no. 2, pp. 716–725, 2012, doi: 10.1108/03321641211200680.
  • [11] Z. Fei, T. Konefal, and R. Armstrong, “AC railway electrification systems-An EMC perspective,” IEEE Electromagn. Compat. Mag., vol. 8, no. 4, pp. 62–69, 2019, doi: 10.1109/MEMC.2019.8985603.
  • [12] G. Lucca and M. Moro, “Environmental 50Hz magnetic field produced by a railway line equipped with autotransformers,” IEEE Int. Symp. Electromagn. Compat., 2008, doi: 10.1109/EMCEUROPE.2008.4786794.
  • [13] G. Lucca, M. Moro, R. Florio, and G. Lidonnici, “Measurements and calculations of 50Hz magnetic field produced by Italian High Speed Railway system,” IEEE Int. Symp. Electromagn. Compat., pp. 10–15, 2012, doi: 10.1109/EMCEurope.2012.6396900.
  • [14] C. Buccella and M. Feliziani, “Three dimensional magnetic field computation inside a high speed train with a.c. electrification,” IEEE International Symposium on Electromagnetic Compatibility., pp. 1-4, 2003, doi: 10.1109/icsmc2.2003.1428334.
  • [15] M. Ö. Baştürk, V. Yüksel, Y. E. Tetik, M. Yılmaz, M. Güner, and T. Kaya, “Detection of Pantograph Horn Defects Based on Deep Learning and Image Processing,” Demiryolu Mühendisliği, no. 16, pp. 102–115, 2022, doi: 10.47072/demiryolu.1132123.
  • [16] Z. Dai, T. Li, N. Zhou, J. Zhang, and W. Zhang, “Numerical simulation and optimization of aerodynamic uplift force of a high-speed pantograph,” Railw. Eng. Sci., vol. 30, no. 1, pp. 117–128, 2022, doi: 10.1007/s40534-021-00258-7.
  • [17] G. Wu et al., “Pantograph–catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks,” Railw. Eng. Sci., 2022, doi: 10.1007/s40534-022-00281-2.
  • [18] G. Wu, W. Wei, G. Gao, J. Wu, and Y. Zhou, “Evolution of the electrical contact of dynamic pantograph–catenary system,” J. Mod. Transp., vol. 24, no. 2, pp. 132–138, 2016, doi: 10.1007/s40534-016-0099-1.
  • [19] “International Commission on Non-Ionizing Radiation Protection: ICNIRP Guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz–100kHz).,” Heal. Phys., vol. 99, no. 6, pp. 818–836, 2010.
  • [20] M. N. Bates, “Extremely low frequency electromagnetic fields and cancer: The epidemiologic evidence,” Environmental Health Perspectives, vol. 95. pp. 147–156, 1991, doi: 10.1289/ehp.9195147.
  • [21] J. Grellier, P. Ravazzani, and E. Cardis, “Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe,” Environ. Int., vol. 62, pp. 55–63, 2014, doi: 10.1016/j.envint.2013.09.017.
  • [22] M. W. Khan, J. Juutilainen, and P. Roivainen, “Registry of Buildings With Transformer Stations as a Basis for Epidemiological Studies on Health Effects of Extremely Low-Frequency Magnetic Fields,” Bioelectromagnetics, vol. 41, no. 1, pp. 34–40, 2020, doi: 10.1002/bem.22228.
  • [23] SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks: Potential Health Effects of Exposure to Electromagnetic Fields (EMF).,January. 2015.
  • [24] J. Bernhardt, “The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 MHz,” Radiat. Environ. Biophys., vol. 16, no. 4, pp. 309–323, 1979, doi: 10.1007/BF01340569.
  • [25] “IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Std C95.1-2005 (Revision IEEE Std C95.1-1991), vol. 2005, no. April, pp. 1–238, 2006.
  • [26] S. Ozen, E. G. Ogel, and S. Helhel, “Residential area medium voltage power lines; public health, and electric and magnetic field levels,” Gazi Univ. J. Sci., vol. 26, no. 4, pp. 573–578, 2013.
  • [27] S. Ozen, H. F. Carlak, O. H. Colak, and S. Helhel, “Magnetic field risk analysis for employees and patients due to power transformers in hospital buildings,” Prog. Electromagn. Res. Symp., pp. 1743–1746, 2017, doi: 10.1109/PIERS.2017.8262031.
  • [28] O. Bottauscio, E. Carpaneto, M. Chiampi, D. Chiarabaglio, and I. Panaitescu, “Numerical and experimental evaluation of magnetic field generated by power busbar systems,” IEE Proc. Gener. Transm. Distrib., vol. 143, no. 5, pp. 455–460, 1996, doi: 10.1049/ip-gtd:19960557.
  • [29] S. V. Kulkarni and S. A. Khaparde, Transformer Engineering Design, Technology, and Diagnostics. 2004.
  • [30] Demiryolu uygulamaları - Trenlerdeki cer transformatörleri ve indüktörler, TS EN 60310, 09.12.2016
  • [31] Demiryolu ortamlarındaki elektrikli ve elektronik sistemlerden kaynaklanan insanların maruz kaldığı manyetik alan seviyelerinin ölçülmesi, TS EN 50500, 19.01.2010
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Serenay Çürükova Kale 0000-0003-2485-2120

Yunus Berat Demirol 0000-0001-7168-2764

Oluş Sönmez 0000-0002-4773-6555

Mehmet Aytaç Çınar 0000-0002-1655-4281

Bora Alboyacı 0000-0002-1117-0326

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 15 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Sayı: 17

Kaynak Göster

IEEE S. Çürükova Kale, Y. B. Demirol, O. Sönmez, M. A. Çınar, ve B. Alboyacı, “Elektrikli Lokomotif Sistemlerinde Cer Transformatörü ve Baraların Oluşturduğu Manyetik Alanların Sonlu Elemanlar Yöntemi ile Hesaplanması”, Demiryolu Mühendisliği, sy. 17, ss. 54–65, Ocak 2023, doi: 10.47072/demiryolu.1175771.