Araştırma Makalesi
BibTex RIS Kaynak Göster

Raylı Sistemlerde Bir Sanal Kuplaj Uygulaması

Yıl 2025, Sayı: 21, 27 - 38, 31.01.2025
https://doi.org/10.47072/demiryolu.1532577

Öz

Son yıllarda büyük şehirlerde artan nüfus ile trafik yoğunluğu artmaktadır. Trafik sorunu şehir içi ulaşımı kolaylaştıran raylı sisteme talebi artırmaktadır. Mevcut demiryolu hatları artan bu talebi karşılamakta yetersiz kalabilmektedir. Bu yüzden yeni raylı sistem hatlarına ihtiyaç vardır. Fakat bu yeni hatlar yüksek yapım maliyetinden dolayı çok uygun değildir. Şehirlerde kullanılan mevcut hatlar genelde Haberleşme Tabanlı Tren Kontrol (CBTC) sinyalizasyon sistemi altında sabit blok veya hareketli blok prensibi kullanılmaktadır. Bu kontrol sistemini geliştirmek ve hat kapasitesini daha fazla arttırmak için yeni sinyalizasyon prensiplerine ihtiyaç vardır. Sanal Kuplaj, 2 veya daha fazla treni fiziksel bağlantı olmadan sanal olarak bağlar veya ayırır. Bu prensibin hattın kapasitesini arttırdığını gösteren çalışmalar mevcuttur. Bu çalışmada, literatürdeki sanal kuplaj çalışmalarından farklı olarak, Oransal-İntegral-Türev (PID) kontrolü kullanılarak bir sanal kuplaj çalışması gerçekleştirilmiştir. Araçtan araca (V2V) iletişim yoluyla yapılan kontrolde sanal kuplaj senaryoları için simülasyonlar yapılmıştır. Lider ve takipçi tren topolojisi ile tasarlanan senaryoların simülasyon sonuçlarına bakıldığında sanal kuplajın trenler arası mesafeyi kısalttığı görülmüştür. Ayrıca, önerilen kontrolör lider ve takipçi trenlerin hızlarını eşitlemiştir. İlk senaryoda trenler istenilen mesafe değerine 60 saniye civarında ulaşmış ve hızlar eşitlenmiştir. İkinci senaryoda takipçi trenin başlangıçta olduğu gibi yine istenilen pozisyona ve hıza 50 saniye civarında ulaştığı görülmektedir. Son senaryoda ise iki tren arasındaki mesafe istenilen değere 180 saniye civarında ulaşmış ve hızlar eşitlenmiştir.

Kaynakça

  • [1] IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements, IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999), 2004. doi: 10.1109/IEEESTD.2004.95746
  • [2] Shift2Rail Joint Undertaking, "Multi-Annual Action Plan," 2015. [Online]. Available: https://www.shift2rail.org/wp-content/uploads/2013/07/MAAP-final_final.pdf. [Accessed 26-Nov-2015]
  • [3] S. Su, W. Liu, Q. Zhu, R. Li, T. Tang, and J. Lv, “A cooperative collision-avoidance control methodology for virtual coupling trains,” Accid. Anal. Prev., vol. 173, 2022, Art. no. 106703. doi: 10.1016/j.aap.2022.106703
  • [4] J. Aoun, E. Quaglietta, R. M. P. Goverde, M. Scheidt, M. Blumenfeld, A. Jack, and B. Redfern, “A hybrid delphi-AHP multi-criteria analysis of moving block and virtual coupling railway signalling,” Transp. Res. Part C Emerg. Technol., vol. 129, 2021, Art. no. 103250. doi: 10.1016/j.trc.2021.103250
  • [5] E. Quaglietta, M. Wang, and R. M. P. Goverde, “A multi-state train-following model for the analysis of virtual coupling railway operations,” J. Rail Transp. Plan. Manag., vol. 15, 2020, Art. no. 100195. doi: 10.1016/j.jrtpm.2020.100195
  • [6] J. Félez, Y. Kim, and F. Borrelli, “A model predictive control approach for virtual coupling in railways,” IEEE Trans. Intell. Transp. Syst., vol. 20, pp. 2728–2739, 2019. doi: 10.1109/TITS.2019.2914910
  • [7] X. Luo, H. Liu, L. Zhang, and J. Xun, “A model predictive control based inter-station driving strategy for virtual coupling trains in railway system,” in Proc. IEEE Int. Intell. Transp. Syst. Conf. (ITSC), Indianapolis, IN, USA, 2021, pp. 3927-3932. doi: 10.1109/ITSC48978.2021.9564895
  • [8] Z. Qianqian and W. Hongwei, “A multi-train cooperative control method of urban railway transportation based on artificial potential field,” in Proc. Chinese Autom. Congr. (CAC), Hangzhou, China, 2019, pp. 1350–1355. doi: 10.1109/CAC48633.2019.8997212
  • [9] M. Chai, H. Wang, T. Tang, J. Chai, and H. Liu, “A relative operation-based separation model for safe distances of virtually coupled trains,” IEEE Trans. Intell. Veh., 2023. doi: 10.1109/TIV.2023.3301009
  • [10] F. Flammini, S. Marrone, R. Nardone, A. Petrillo, S. Santini, and V. Vittorini, “Towards railway virtual coupling,” in Proc. IEEE Int. Electr. Syst. Aircraft, Railway, Ship Propulsion Road Veh. Int. Transp. Electrific. Conf. (ESARS-ITEC), Nottingham, UK, 2018, pp. 1–6. doi: 10.1109/ESARS-ITEC.2018.8607523
  • [11] V. Olentsevich, V. Konyukhov, A. Olentsevich, and D. Lysenko, “Efficiency of implementation of interval traffic regulation by the virtual coupling system on the section of the railway line in the framework of the digital railway project,” J. Phys. Conf. Ser., vol. 1661, 2020. doi: 10.1088/1742-6596/1661/1/012106
  • [12] Y. Cao, J. Wen, and L. Ma, “Tracking and collision avoidance of virtual coupling train control system,” Future Gener. Comput. Syst., vol. 120, pp. 76–90, 2021. doi: 10.1016/j.future.2021.02.014.
  • [13] Wikipedia katılımcıları, “PID,” 2024. [Online]. Available: https://tr.wikipedia.org/w/index.php?title=PID&oldid=31190908. [Accessed: 20-Ağu-2024]

A Virtual Coupling Application in Railway Systems

Yıl 2025, Sayı: 21, 27 - 38, 31.01.2025
https://doi.org/10.47072/demiryolu.1532577

Öz

In recent years, the traffic density has increased with the increasing population in big cities. The traffic problem increases the demand for the rail system that facilitates urban transportation. Existing railway lines may be insufficient to meet this increasing demand. Therefore, new rail system lines are needed. However, these new lines are not very suitable due to their high construction costs. Existing lines used in cities generally use the fixed block or moving block principle under the Communication Based Train Control (CBTC) signaling system. New signaling principles are needed to improve this control system and further increase the line capacity. Virtual Coupling connects or separates 2 or more trains virtually without a physical connection. There are studies showing that this principle increases the capacity of the line. In this study, unlike the virtual coupling studies in the literature, a virtual coupling study was carried out using Proportional-Integral-Derivative (PID) control. Simulations were made for virtual coupling scenarios in the control made via vehicle-to-vehicle (V2V) communication. When the simulation results of the scenarios designed with the leader and follower train topology are examined, it is seen that virtual coupling shortens the distance between trains. Moreover, the proposed controller has equalized the speeds of the leader and follower trains. In the first scenario, the trains reached the desired distance value around 60 seconds and the speeds were equalized. In the second scenario, the follower train is seen to reach the desired position and speed again around 50 seconds as it was at the beginning. In the last scenario, the distance between the two trains reached the desired value around 180 seconds and the speeds were equalized.

Kaynakça

  • [1] IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements, IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999), 2004. doi: 10.1109/IEEESTD.2004.95746
  • [2] Shift2Rail Joint Undertaking, "Multi-Annual Action Plan," 2015. [Online]. Available: https://www.shift2rail.org/wp-content/uploads/2013/07/MAAP-final_final.pdf. [Accessed 26-Nov-2015]
  • [3] S. Su, W. Liu, Q. Zhu, R. Li, T. Tang, and J. Lv, “A cooperative collision-avoidance control methodology for virtual coupling trains,” Accid. Anal. Prev., vol. 173, 2022, Art. no. 106703. doi: 10.1016/j.aap.2022.106703
  • [4] J. Aoun, E. Quaglietta, R. M. P. Goverde, M. Scheidt, M. Blumenfeld, A. Jack, and B. Redfern, “A hybrid delphi-AHP multi-criteria analysis of moving block and virtual coupling railway signalling,” Transp. Res. Part C Emerg. Technol., vol. 129, 2021, Art. no. 103250. doi: 10.1016/j.trc.2021.103250
  • [5] E. Quaglietta, M. Wang, and R. M. P. Goverde, “A multi-state train-following model for the analysis of virtual coupling railway operations,” J. Rail Transp. Plan. Manag., vol. 15, 2020, Art. no. 100195. doi: 10.1016/j.jrtpm.2020.100195
  • [6] J. Félez, Y. Kim, and F. Borrelli, “A model predictive control approach for virtual coupling in railways,” IEEE Trans. Intell. Transp. Syst., vol. 20, pp. 2728–2739, 2019. doi: 10.1109/TITS.2019.2914910
  • [7] X. Luo, H. Liu, L. Zhang, and J. Xun, “A model predictive control based inter-station driving strategy for virtual coupling trains in railway system,” in Proc. IEEE Int. Intell. Transp. Syst. Conf. (ITSC), Indianapolis, IN, USA, 2021, pp. 3927-3932. doi: 10.1109/ITSC48978.2021.9564895
  • [8] Z. Qianqian and W. Hongwei, “A multi-train cooperative control method of urban railway transportation based on artificial potential field,” in Proc. Chinese Autom. Congr. (CAC), Hangzhou, China, 2019, pp. 1350–1355. doi: 10.1109/CAC48633.2019.8997212
  • [9] M. Chai, H. Wang, T. Tang, J. Chai, and H. Liu, “A relative operation-based separation model for safe distances of virtually coupled trains,” IEEE Trans. Intell. Veh., 2023. doi: 10.1109/TIV.2023.3301009
  • [10] F. Flammini, S. Marrone, R. Nardone, A. Petrillo, S. Santini, and V. Vittorini, “Towards railway virtual coupling,” in Proc. IEEE Int. Electr. Syst. Aircraft, Railway, Ship Propulsion Road Veh. Int. Transp. Electrific. Conf. (ESARS-ITEC), Nottingham, UK, 2018, pp. 1–6. doi: 10.1109/ESARS-ITEC.2018.8607523
  • [11] V. Olentsevich, V. Konyukhov, A. Olentsevich, and D. Lysenko, “Efficiency of implementation of interval traffic regulation by the virtual coupling system on the section of the railway line in the framework of the digital railway project,” J. Phys. Conf. Ser., vol. 1661, 2020. doi: 10.1088/1742-6596/1661/1/012106
  • [12] Y. Cao, J. Wen, and L. Ma, “Tracking and collision avoidance of virtual coupling train control system,” Future Gener. Comput. Syst., vol. 120, pp. 76–90, 2021. doi: 10.1016/j.future.2021.02.014.
  • [13] Wikipedia katılımcıları, “PID,” 2024. [Online]. Available: https://tr.wikipedia.org/w/index.php?title=PID&oldid=31190908. [Accessed: 20-Ağu-2024]
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektronik Cihaz ve Sistem Performansı Değerlendirme, Test ve Simülasyon, Kontrol Teorisi ve Uygulamaları, Kontrol Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Muhammed Mustafa Kaya 0009-0007-1609-8419

Mehmet Turan Söylemez 0000-0002-7600-0707

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 13 Ağustos 2024
Kabul Tarihi 1 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Sayı: 21

Kaynak Göster

IEEE M. M. Kaya ve M. T. Söylemez, “Raylı Sistemlerde Bir Sanal Kuplaj Uygulaması”, Demiryolu Mühendisliği, sy. 21, ss. 27–38, Ocak 2025, doi: 10.47072/demiryolu.1532577.