Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the Use of Sustainable ECCs Containing Waste Brick, Waste Marble and PP Fiber as Sleepers and Slab Track

Yıl 2025, Sayı: 22, 132 - 146, 31.07.2025
https://doi.org/10.47072/demiryolu.1729747

Öz

In light of today's challenging operating conditions, the use of new-generation composite materials in sleepers and slab track superstructure systems is a key area of research. Engineered Cementitious Composites (ECC), with their high deformation capacity and superior mechanical properties, could be a potential solution to this problem. This study investigated the use of Waste Brick (AT), Waste Marble (AM) and hybridized polypropylene (PP) fibers of different lengths in the production of ECC for the first time. For the purpose of sustainable ECC production, AT was used instead of cement, AM was used instead of sand and hybrid PP fibers with a length of 6 and 12 mm were used instead of PVA fiber. Mini-slump, compressive strength, flexural strength, mid-span beam deflection and ultrasonic pulse velocity (UPV) tests were performed on the produced ECC samples. The results showed that the use of AT and PP decreased the mechanical properties, whereas AM additive increased the mechanical properties. It was determined that the use of AM and PP decreased ductility, while AT increased ductility. UPV results showed positive correlation with mechanical properties. The findings revealed that the addition of AT, AM and PP to ECC enables sustainable production, making this material a potential alternative for sleeper and slab track applications.

Kaynakça

  • [1] Silva, R. Nogueira, M. G. Gomes, ve J. A. Bogas, “Carbon utilization during concrete production: reasons for the low CO2 uptake”, Journal of Building Engineering, c. 107, s. 112766, Ağu. 2025, doi: 10.1016/J.JOBE.2025.112766.
  • [2] E. Khalil ve M. AbouZeid, “Framework for Cement Plants Assessment Through Cement Production Improvement Measures for Reduction of CO2 Emissions Towards Net Zero Emissions”, Construction Materials 2025, Vol. 5, Page 20, c. 5, sy 2, s. 20, Nis. 2025, doi: 10.3390/CONSTRMATER5020020
  • [3] T. Y. Erdoğan, Beton. Ankara, Turkey: ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim, 2007.
  • [4] M. Kozak, B. Demiryolu Bakım Servis Müdürlüğü, A. Alınış, A. Kelimeler Travers, ve B. travers, “Kalker ve Bazalt Agregaları ile Beton Travers Üretimi”, Teknik Bilimler Dergisi, c. 10, sy 2, ss. 19-25, Tem. 2020, doi: 10.35354/TBED.679346
  • [5] F. Çeçen vd., “Karbon-Fiber Plaka Donatılı Traverslerin, B70-Tipi Öngerilmeli Beton Traverslerle Karşılaştırmalı İncelenmesi”, Railway Engineering, sy 15, ss. 97-110, Oca. 2022, doi: 10.47072/DEMIRYOLU.1028740
  • [6] O. Yazıcı, “Yeni Nesil Çevreci Kompozit Traversler”, Railway Engineering, sy 12, ss. 13-21, Tem. 2020, doi: 10.47072/DEMIRYOLU.687880.
  • [7] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, S. Kaewunruen, ve A. Remennikov, “Composite railway sleepers – Recent developments, challenges and future prospects”, Compos Struct, c. 134, ss. 158-168, Ara. 2015, doi: 10.1016/J.COMPSTRUCT.2015.08.058.
  • [8] M. E. Arafat ve F. Imam, “Suitability of recycled materials as a composite sleeper: A scoping review”, Mater Today Proc, c. 65, ss. 1599-1607, Oca. 2022, doi: 10.1016/J.MATPR.2022.04.599.
  • [9] M. H. Esmaeili, H. Norouzi, ve F. Niazi, “Evaluation of mechanical and performance characteristics of a new composite railway sleeper made from recycled plastics, mineral fillers and industrial wastes”, Compos B Eng, c. 254, s. 110581, Nis. 2023, doi: 10.1016/J.COMPOSITESB.2023.110581.
  • [10] F. Çeçen ve B. Aktaş, “B70 Tipi Demiryolu Traverslerinde Polipropilen Fiber Kullanımının Deneysel İncelenmesi”, Demiryolu Mühendisliği, sy 15, ss. 158-169, Oca. 2022, doi: 10.47072/DEMIRYOLU.990316.
  • [11] F. Çeçen ve B. Aktaş, “Yeni Yeşil-Travers Modelinin B70 Tipi Öngerilmeli Traverslerle Karşılaştırmalı İncelenmesi”, Demiryolu Mühendisliği, sy 17, ss. 1-13, Oca. 2023, doi: 10.47072/DEMIRYOLU.1107683.
  • [12] A. A. Khalil, “Mechanical Testing of Innovated Composite Polymer Material for using in Manufacture of Railway Sleepers”, J Polym Environ, c. 26, sy 1, ss. 263-274, Oca. 2018, doi: 10.1007/S10924-017-0940-6/TABLES/4.
  • [13] J. J. Yee, S. C. Khong, J. Che, K. F. Tee, ve S. C. Chin, “Sustainable Materials in Concrete Railway Sleepers: A Review of Current Developments and Future Prospects”, Journal of Chemical Engineering and Industrial Biotechnology, c. 10, sy 1, ss. 1-16, Haz. 2024, doi: 10.15282/JCEIB.V10I1.10292.
  • [14] F. Çeçen ve B. Aktaş, “Yeni LCR Tipi Traverslerin Demiryolu Hat Rijitliğine Etkisinin Araştırılması”, Demiryolu Mühendisliği, c. 0, sy 16, ss. 36-50, Tem. 2022, doi: 10.47072/DEMIRYOLU.1105999.
  • [15] C. Ceylan, “Demiryolu Hatlarında Balastsız Üstyapı Kullanılması”, Demiryolu Mühendisliği, sy. 6, ss. 34–36, Aralık 2017.
  • [16] M. N. Demirdağ ve Z. Öztürk, “Balastsız Üstyapılarda Ondülasyon Bakım Maliyetinin Üstyapı Bakım Maliyeti İçindeki Oranının Örnek Hatta İncelenmesi”, ECJSE, c. 4, sy. 3, ss. 509–517, 2017, doi: 10.31202/ecjse.331656.
  • [17] S. R. Matias ve P. A. Ferreira, “Railway slab track systems: review and research potentials”, Structure and Infrastructure Engineering, c. 16, sy 12, ss. 1635-1653, Ara. 2020, doi: 10.1080/15732479.2020.1719167.
  • [18] S. Demirhan, “Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri”, Politeknik Dergisi, c. 27, sy. 4, ss. 1365–1374, 2024, doi: 10.2339/politeknik.1224004.
  • [19] F. B. P. da Costa, D. P. Righi, A. G. Graeff, ve L. C. P. da Silva Filho, “Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers”, Constr Build Mater, c. 213, ss. 505-513, Tem. 2019, doi: 10.1016/J.CONBUILDMAT.2019.04.092.
  • [20] H. E. Yücel, H. Ö. Öz, M. Güneş, ve Y. Kaya, “Rheological properties, strength characteristics and flexural performances of engineered cementitious composites incorporating synthetic wollastonite microfibers with two different high aspect ratios”, Constr Build Mater, c. 306, Kas. 2021, doi: 10.1016/j.conbuildmat.2021.124921.
  • [21] H. E. Yücel, M. Dutkiewicz, ve F. Yıldızhan, “Application of ECC as a Repair/Retrofit and Pavement/Bridge Deck Material for Sustainable Structures: A Review”, Materials 2022, Vol. 15, Page 8752, c. 15, sy 24, s. 8752, Ara. 2022, doi: 10.3390/MA15248752.
  • [22] Y. Wang, Z. Zhang, J. Yu, J. Xiao, ve Q. Xu, “Using Green Supplementary Materials to Achieve More Ductile ECC”, Materials 2019, Vol. 12, Page 858, c. 12, sy 6, s. 858, Mar. 2019, doi: 10.3390/MA12060858.
  • [23] Y. Yang, E. H. Yang, ve V. C. Li, “Autogenous healing of engineered cementitious composites at early age”, Cem Concr Res, c. 41, sy 2, ss. 176-183, Şub. 2011, doi: 10.1016/J.CEMCONRES.2010.11.002.
  • [24] T. Kamada ve V. C. Li, “The effects of surface preparation on the fracture behavior of ECC/concrete repair system”, Cem Concr Compos, c. 22, sy 6, ss. 423-431, Ara. 2000, doi: 10.1016/S0958-9465(00)00042-1.
  • [25] Y. Zhou, H. Fu, P. Li, D. Zhao, L. Sui, ve L. Li, “Bond behavior between steel bar and engineered cementitious composite (ECC) considering lateral FRP confinement: Test and modeling”, Compos Struct, c. 226, s. 111206, Eki. 2019, doi: 10.1016/J.COMPSTRUCT.2019.111206.
  • [26] S. Gao ve P. Xie, “Effect of Temperatures and Moisture Content on the Fracture Properties of Engineered Cementitious Composites (ECC)”, Materials 2022, Vol. 15, Page 2604, c. 15, sy 7, s. 2604, Nis. 2022, doi: 10.3390/MA15072604.
  • [27] D. Shoji, Z. He, D. Zhang, ve V. C. Li, “The greening of engineered cementitious composites (ECC): A review”, Constr Build Mater, c. 327, s. 126701, Nis. 2022, doi: 10.1016/J.CONBUILDMAT.2022.126701.
  • [28] H. Wu vd., “Properties of Cementitious Materials with Recycled Aggregate and Powder Both from Clay Brick Waste”, Buildings 2021, Vol. 11, Page 119, c. 11, sy 3, s. 119, Mar. 2021, doi: 10.3390/BUILDINGS11030119.
  • [29] Z. Ma, Q. Tang, H. Wu, J. Xu, ve C. Liang, “Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste”, Cem Concr Compos, c. 114, s. 103758, Kas. 2020, doi: 10.1016/J.CEMCONCOMP.2020.103758.
  • [30] H. Wu, C. Liang, C. Wang, ve Z. Ma, “Properties of green mortar blended with waste concrete-brick powder at various components, replacement ratios and particle sizes”, Constr Build Mater, c. 342, s. 128050, Ağu. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128050.
  • [31] J. D. Wu, L. P. Guo, ve Y. Y. Qin, “Preparation and characterization of ultra-high-strength and ultra-high-ductility cementitious composites incorporating waste clay brick powder”, J Clean Prod, c. 312, s. 127813, Ağu. 2021, doi: 10.1016/J.JCLEPRO.2021.127813.
  • [32] W. Wang, H. Wu, Z. Ma, ve R. Wu, “Using Eco-Friendly Recycled Powder from CDW to Prepare Strain Hardening Cementitious Composites (SHCC) and Properties Determination”, Materials 2020, Vol. 13, Page 1143, c. 13, sy 5, s. 1143, Mar. 2020, doi: 10.3390/MA13051143.
  • [33] P. Yao, D. Yang, C. Wang, ve Z. Ma, “Upcycling of construction waste powder for sustainable ultra-high performance engineered cementitious composites: Effects of waste powder source and content”, Constr Build Mater, c. 349, s. 128789, Eyl. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128789.
  • [34] C. Liang, Y. Zhang, R. Wu, D. Yang, ve Z. Ma, “The utilization of active recycled powder from various construction wastes in preparing ductile fiber-reinforced cementitious composites: A case study”, Case Studies in Construction Materials, c. 15, s. e00650, Ara. 2021, doi: 10.1016/J.CSCM.2021.E00650.
  • [35] Z. Zhang, X. Liu, R. Hu, C. Liang, Y. Zhang, ve Z. Ma, “Mechanical behavior of sustainable engineered cementitious composites with construction waste powder as binder and sand replacement”, Constr Build Mater, c. 404, s. 133185, Kas. 2023, doi: 10.1016/J.CONBUILDMAT.2023.133185.
  • [36] R. Wu, T. Zhao, P. Zhang, D. Yang, M. Liu, ve Z. Ma, “Tensile Behavior of Strain Hardening Cementitious Composites (SHCC) Containing Reactive Recycled Powder from Various C&D Waste”, J Renew Mater, c. 9, sy 4, ss. 743-765, Şub. 2021, doi: 10.32604/JRM.2021.013669.
  • [37] E. Tugrul Tunc, “Recycling of marble waste: A review based on strength of concrete containing marble waste”, J Environ Manage, c. 231, ss. 86-97, Şub. 2019, doi: 10.1016/J.JENVMAN.2018.10.034.
  • [38] F. Gameiro, J. De Brito, ve D. Correia da Silva, “Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry”, Eng Struct, c. 59, ss. 654-662, Şub. 2014, doi: 10.1016/J.ENGSTRUCT.2013.11.026.
  • [39] B. Demirel, “The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete”, International Journal of the Physical Sciences, c. 5, sy 9, ss. 1372-1380, 2010, Erişim: 04 Mart 2025. [Çevrimiçi]. Erişim adresi: http://www.academicjournals.org/IJPS
  • [40] K. A. Helal, A. M. Tahwia, ve O. Youssf, “Assessment of the efficiency of hybrid basalt fibre sustainable ECC incorporating industrial waste materials”, Constr Build Mater, c. 461, s. 139933, Oca. 2025, doi: 10.1016/J.CONBUILDMAT.2025.139933.
  • [41] D. Zhang, J. Yu, H. Wu, B. Jaworska, B. R. Ellis, ve V. C. Li, “Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC)”, Compos B Eng, c. 184, s. 107741, Mar. 2020, doi: 10.1016/J.COMPOSITESB.2020.107741.
  • [42] A. Saljoughian, H. Bahmani, Z. Ansari, N. Jafari, ve D. Mostofinejad, “An eco-friendly ECC with high slag and polypropylene fiber content for high-tensile strain applications”, Journal of Building Engineering, c. 91, s. 109726, Ağu. 2024, doi: 10.1016/J.JOBE.2024.109726.
  • [43] S. R. Abid, M. S. Shamkhi, N. S. Mahdi, ve Y. H. Daek, “Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers”, Constr Build Mater, c. 187, ss. 168-177, Eki. 2018, doi: 10.1016/J.CONBUILDMAT.2018.07.194.
  • [44] W. Zhang, C. Yin, F. Ma, ve Z. Huang, “Mechanical Properties and Carbonation Durability of Engineered Cementitious Composites Reinforced by Polypropylene and Hydrophilic Polyvinyl Alcohol Fibers”, Materials 2018, Vol. 11, Page 1147, c. 11, sy 7, s. 1147, Tem. 2018, doi: 10.3390/MA11071147.
  • [45] C. Ding, L. Guo, ve B. Chen, “An optimum polyvinyl alcohol fiber length for reinforced high ductility cementitious composites based on theoretical and experimental analyses”, Constr Build Mater, c. 259, s. 119824, Eki. 2020, doi: 10.1016/J.CONBUILDMAT.2020.119824.
  • [46] S. H. Said, H. A. Razak, ve I. Othman, “Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers”, Constr Build Mater, c. 75, ss. 176-188, Oca. 2015, doi: 10.1016/J.CONBUILDMAT.2014.10.036.
  • [47] “Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)”, Oca. 2020, doi: 10.1520/C0109_C0109M-20.
  • [48] “Test Method for Pulse Velocity Through Concrete”, Nis. 2016, doi: 10.1520/C0597-16.
  • [49] M. Hou ve V. C. Li, “Tailoring crack width control of LC3-based engineered cementitious composites (ECC) via fiber hybridization: From micromechanics design to macro investigation”, Mater Des, c. 235, s. 112433, Kas. 2023, doi: 10.1016/J.MATDES.2023.112433.
  • [50] J. X. Lin vd., “Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers”, Journal of Building Engineering, c. 29, s. 101097, May. 2020, doi: 10.1016/J.JOBE.2019.101097.
  • [51] “Test Method for Railway applications - Track - Concrete sleepers and bearers - Part 1: General requirements”, Ara.. 2016.
  • [52] E. Özbay, M. Şahmaran, M. Lachemi, ve H. E. Yücel, “Self-Healing of Microcracks in High-Volume Fly-Ash- Incorporated Engineered Cementitious Composites”, Materials Journal, c. 110, sy 1, ss. 33-44, Oca. 2013, doi: 10.14359/51684371.
  • [53] C. L. Wong, K. H. Mo, S. P. Yap, U. J. Alengaram, ve T. C. Ling, “Potential use of brick waste as alternate concrete-making materials: A review”, J Clean Prod, c. 195, ss. 226-239, Eyl. 2018, doi: 10.1016/J.JCLEPRO.2018.05.193.
  • [54] B. Prakash, T. J. Saravanan, K. I. S. A. Kabeer, ve K. Bisht, “Exploring the potential of waste marble powder as a sustainable substitute to cement in cement-based composites: A review”, Constr Build Mater, c. 401, s. 132887, Eki. 2023, doi: 10.1016/J.CONBUILDMAT.2023.132887.
  • [55] D. Zhang, B. Jaworska, H. Zhu, K. Dahlquist, ve V. C. Li, “Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3)”, Cem Concr Compos, c. 114, s. 103766, Kas. 2020, doi: 10.1016/J.CEMCONCOMP.2020.103766.
  • [56] N. Bheel vd., “Effect of calcined clay and marble dust powder as cementitious material on the mechanical properties and embodied carbon of high strength concrete by using RSM-based modelling”, Heliyon, c. 9, sy 4, s. e15029, Nis. 2023, doi: 10.1016/J.HELIYON.2023.E15029/ASSET/81C8A489-3DA8-412C-993F-BCC287FE0DBF/MAIN.ASSETS/GR8_LRG.JPG.

Atık Tuğla, Atık Mermer ve PP Lif İçeren Sürdürülebilir ECC'lerin Travers ve Balastsız Üstyapı Olarak Kullanımının Değerlendirilmesi

Yıl 2025, Sayı: 22, 132 - 146, 31.07.2025
https://doi.org/10.47072/demiryolu.1729747

Öz

Günümüzdeki zorlu işletim koşulları göz önüne alındığında, traversler ve balastsız üstyapı sistemlerinde yeni nesil kompozit malzemelerin kullanımı önemli bir araştırma konusudur. Yüksek deformasyon kapasitesi ve üstün mekanik özelliklere sahip Tasarlanmış Çimento Esaslı Kompozitler (Engineered Cementitious Composites, ECC), bu alanda potansiyel bir çözüm sunmaktadır. Bu çalışmada, ilk kez Atık Tuğla (AT), Atık Mermer (AM) ve farklı uzunluklarda hibritlenmiş Polipropilen (PP) liflerin ECC üretiminde kullanımı araştırılmıştır. Sürdürülebilir ECC üretimi amacıyla, çimento yerine AT, kum yerine AM ve PVA lif yerine 6 ve 12 mm uzunluğundaki hibrit PP lifler kullanılmıştır. Üretilen ECC numuneleri üzerinde mini-slump, basınç dayanımı, eğilme dayanımı, orta nokta sehim ve ultrasonik dalga hızı (UDH) testleri gerçekleştirilmiştir. Sonuçlar, AT ve PP kullanımının mekanik özellikleri azalttığını, buna karşın AM katkısının mekanik özellikleri artırdığını göstermiştir. AT sünekliği artırırken, AM ve PP kullanımının sünekliği azalttığı belirlenmiştir. UDH sonuçları mekanik özelliklerle pozitif korelasyon göstermiştir. Elde edilen bulgular, AT, AM ve PP katkılı ECC'nin sürdürülebilir üretimi mümkün kıldığını ve bu malzemenin travers ve balastsız üstyapı uygulamaları için potansiyel bir alternatif olabileceğini ortaya koymuştur.

Kaynakça

  • [1] Silva, R. Nogueira, M. G. Gomes, ve J. A. Bogas, “Carbon utilization during concrete production: reasons for the low CO2 uptake”, Journal of Building Engineering, c. 107, s. 112766, Ağu. 2025, doi: 10.1016/J.JOBE.2025.112766.
  • [2] E. Khalil ve M. AbouZeid, “Framework for Cement Plants Assessment Through Cement Production Improvement Measures for Reduction of CO2 Emissions Towards Net Zero Emissions”, Construction Materials 2025, Vol. 5, Page 20, c. 5, sy 2, s. 20, Nis. 2025, doi: 10.3390/CONSTRMATER5020020
  • [3] T. Y. Erdoğan, Beton. Ankara, Turkey: ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim, 2007.
  • [4] M. Kozak, B. Demiryolu Bakım Servis Müdürlüğü, A. Alınış, A. Kelimeler Travers, ve B. travers, “Kalker ve Bazalt Agregaları ile Beton Travers Üretimi”, Teknik Bilimler Dergisi, c. 10, sy 2, ss. 19-25, Tem. 2020, doi: 10.35354/TBED.679346
  • [5] F. Çeçen vd., “Karbon-Fiber Plaka Donatılı Traverslerin, B70-Tipi Öngerilmeli Beton Traverslerle Karşılaştırmalı İncelenmesi”, Railway Engineering, sy 15, ss. 97-110, Oca. 2022, doi: 10.47072/DEMIRYOLU.1028740
  • [6] O. Yazıcı, “Yeni Nesil Çevreci Kompozit Traversler”, Railway Engineering, sy 12, ss. 13-21, Tem. 2020, doi: 10.47072/DEMIRYOLU.687880.
  • [7] W. Ferdous, A. Manalo, G. Van Erp, T. Aravinthan, S. Kaewunruen, ve A. Remennikov, “Composite railway sleepers – Recent developments, challenges and future prospects”, Compos Struct, c. 134, ss. 158-168, Ara. 2015, doi: 10.1016/J.COMPSTRUCT.2015.08.058.
  • [8] M. E. Arafat ve F. Imam, “Suitability of recycled materials as a composite sleeper: A scoping review”, Mater Today Proc, c. 65, ss. 1599-1607, Oca. 2022, doi: 10.1016/J.MATPR.2022.04.599.
  • [9] M. H. Esmaeili, H. Norouzi, ve F. Niazi, “Evaluation of mechanical and performance characteristics of a new composite railway sleeper made from recycled plastics, mineral fillers and industrial wastes”, Compos B Eng, c. 254, s. 110581, Nis. 2023, doi: 10.1016/J.COMPOSITESB.2023.110581.
  • [10] F. Çeçen ve B. Aktaş, “B70 Tipi Demiryolu Traverslerinde Polipropilen Fiber Kullanımının Deneysel İncelenmesi”, Demiryolu Mühendisliği, sy 15, ss. 158-169, Oca. 2022, doi: 10.47072/DEMIRYOLU.990316.
  • [11] F. Çeçen ve B. Aktaş, “Yeni Yeşil-Travers Modelinin B70 Tipi Öngerilmeli Traverslerle Karşılaştırmalı İncelenmesi”, Demiryolu Mühendisliği, sy 17, ss. 1-13, Oca. 2023, doi: 10.47072/DEMIRYOLU.1107683.
  • [12] A. A. Khalil, “Mechanical Testing of Innovated Composite Polymer Material for using in Manufacture of Railway Sleepers”, J Polym Environ, c. 26, sy 1, ss. 263-274, Oca. 2018, doi: 10.1007/S10924-017-0940-6/TABLES/4.
  • [13] J. J. Yee, S. C. Khong, J. Che, K. F. Tee, ve S. C. Chin, “Sustainable Materials in Concrete Railway Sleepers: A Review of Current Developments and Future Prospects”, Journal of Chemical Engineering and Industrial Biotechnology, c. 10, sy 1, ss. 1-16, Haz. 2024, doi: 10.15282/JCEIB.V10I1.10292.
  • [14] F. Çeçen ve B. Aktaş, “Yeni LCR Tipi Traverslerin Demiryolu Hat Rijitliğine Etkisinin Araştırılması”, Demiryolu Mühendisliği, c. 0, sy 16, ss. 36-50, Tem. 2022, doi: 10.47072/DEMIRYOLU.1105999.
  • [15] C. Ceylan, “Demiryolu Hatlarında Balastsız Üstyapı Kullanılması”, Demiryolu Mühendisliği, sy. 6, ss. 34–36, Aralık 2017.
  • [16] M. N. Demirdağ ve Z. Öztürk, “Balastsız Üstyapılarda Ondülasyon Bakım Maliyetinin Üstyapı Bakım Maliyeti İçindeki Oranının Örnek Hatta İncelenmesi”, ECJSE, c. 4, sy. 3, ss. 509–517, 2017, doi: 10.31202/ecjse.331656.
  • [17] S. R. Matias ve P. A. Ferreira, “Railway slab track systems: review and research potentials”, Structure and Infrastructure Engineering, c. 16, sy 12, ss. 1635-1653, Ara. 2020, doi: 10.1080/15732479.2020.1719167.
  • [18] S. Demirhan, “Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri”, Politeknik Dergisi, c. 27, sy. 4, ss. 1365–1374, 2024, doi: 10.2339/politeknik.1224004.
  • [19] F. B. P. da Costa, D. P. Righi, A. G. Graeff, ve L. C. P. da Silva Filho, “Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers”, Constr Build Mater, c. 213, ss. 505-513, Tem. 2019, doi: 10.1016/J.CONBUILDMAT.2019.04.092.
  • [20] H. E. Yücel, H. Ö. Öz, M. Güneş, ve Y. Kaya, “Rheological properties, strength characteristics and flexural performances of engineered cementitious composites incorporating synthetic wollastonite microfibers with two different high aspect ratios”, Constr Build Mater, c. 306, Kas. 2021, doi: 10.1016/j.conbuildmat.2021.124921.
  • [21] H. E. Yücel, M. Dutkiewicz, ve F. Yıldızhan, “Application of ECC as a Repair/Retrofit and Pavement/Bridge Deck Material for Sustainable Structures: A Review”, Materials 2022, Vol. 15, Page 8752, c. 15, sy 24, s. 8752, Ara. 2022, doi: 10.3390/MA15248752.
  • [22] Y. Wang, Z. Zhang, J. Yu, J. Xiao, ve Q. Xu, “Using Green Supplementary Materials to Achieve More Ductile ECC”, Materials 2019, Vol. 12, Page 858, c. 12, sy 6, s. 858, Mar. 2019, doi: 10.3390/MA12060858.
  • [23] Y. Yang, E. H. Yang, ve V. C. Li, “Autogenous healing of engineered cementitious composites at early age”, Cem Concr Res, c. 41, sy 2, ss. 176-183, Şub. 2011, doi: 10.1016/J.CEMCONRES.2010.11.002.
  • [24] T. Kamada ve V. C. Li, “The effects of surface preparation on the fracture behavior of ECC/concrete repair system”, Cem Concr Compos, c. 22, sy 6, ss. 423-431, Ara. 2000, doi: 10.1016/S0958-9465(00)00042-1.
  • [25] Y. Zhou, H. Fu, P. Li, D. Zhao, L. Sui, ve L. Li, “Bond behavior between steel bar and engineered cementitious composite (ECC) considering lateral FRP confinement: Test and modeling”, Compos Struct, c. 226, s. 111206, Eki. 2019, doi: 10.1016/J.COMPSTRUCT.2019.111206.
  • [26] S. Gao ve P. Xie, “Effect of Temperatures and Moisture Content on the Fracture Properties of Engineered Cementitious Composites (ECC)”, Materials 2022, Vol. 15, Page 2604, c. 15, sy 7, s. 2604, Nis. 2022, doi: 10.3390/MA15072604.
  • [27] D. Shoji, Z. He, D. Zhang, ve V. C. Li, “The greening of engineered cementitious composites (ECC): A review”, Constr Build Mater, c. 327, s. 126701, Nis. 2022, doi: 10.1016/J.CONBUILDMAT.2022.126701.
  • [28] H. Wu vd., “Properties of Cementitious Materials with Recycled Aggregate and Powder Both from Clay Brick Waste”, Buildings 2021, Vol. 11, Page 119, c. 11, sy 3, s. 119, Mar. 2021, doi: 10.3390/BUILDINGS11030119.
  • [29] Z. Ma, Q. Tang, H. Wu, J. Xu, ve C. Liang, “Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste”, Cem Concr Compos, c. 114, s. 103758, Kas. 2020, doi: 10.1016/J.CEMCONCOMP.2020.103758.
  • [30] H. Wu, C. Liang, C. Wang, ve Z. Ma, “Properties of green mortar blended with waste concrete-brick powder at various components, replacement ratios and particle sizes”, Constr Build Mater, c. 342, s. 128050, Ağu. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128050.
  • [31] J. D. Wu, L. P. Guo, ve Y. Y. Qin, “Preparation and characterization of ultra-high-strength and ultra-high-ductility cementitious composites incorporating waste clay brick powder”, J Clean Prod, c. 312, s. 127813, Ağu. 2021, doi: 10.1016/J.JCLEPRO.2021.127813.
  • [32] W. Wang, H. Wu, Z. Ma, ve R. Wu, “Using Eco-Friendly Recycled Powder from CDW to Prepare Strain Hardening Cementitious Composites (SHCC) and Properties Determination”, Materials 2020, Vol. 13, Page 1143, c. 13, sy 5, s. 1143, Mar. 2020, doi: 10.3390/MA13051143.
  • [33] P. Yao, D. Yang, C. Wang, ve Z. Ma, “Upcycling of construction waste powder for sustainable ultra-high performance engineered cementitious composites: Effects of waste powder source and content”, Constr Build Mater, c. 349, s. 128789, Eyl. 2022, doi: 10.1016/J.CONBUILDMAT.2022.128789.
  • [34] C. Liang, Y. Zhang, R. Wu, D. Yang, ve Z. Ma, “The utilization of active recycled powder from various construction wastes in preparing ductile fiber-reinforced cementitious composites: A case study”, Case Studies in Construction Materials, c. 15, s. e00650, Ara. 2021, doi: 10.1016/J.CSCM.2021.E00650.
  • [35] Z. Zhang, X. Liu, R. Hu, C. Liang, Y. Zhang, ve Z. Ma, “Mechanical behavior of sustainable engineered cementitious composites with construction waste powder as binder and sand replacement”, Constr Build Mater, c. 404, s. 133185, Kas. 2023, doi: 10.1016/J.CONBUILDMAT.2023.133185.
  • [36] R. Wu, T. Zhao, P. Zhang, D. Yang, M. Liu, ve Z. Ma, “Tensile Behavior of Strain Hardening Cementitious Composites (SHCC) Containing Reactive Recycled Powder from Various C&D Waste”, J Renew Mater, c. 9, sy 4, ss. 743-765, Şub. 2021, doi: 10.32604/JRM.2021.013669.
  • [37] E. Tugrul Tunc, “Recycling of marble waste: A review based on strength of concrete containing marble waste”, J Environ Manage, c. 231, ss. 86-97, Şub. 2019, doi: 10.1016/J.JENVMAN.2018.10.034.
  • [38] F. Gameiro, J. De Brito, ve D. Correia da Silva, “Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry”, Eng Struct, c. 59, ss. 654-662, Şub. 2014, doi: 10.1016/J.ENGSTRUCT.2013.11.026.
  • [39] B. Demirel, “The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete”, International Journal of the Physical Sciences, c. 5, sy 9, ss. 1372-1380, 2010, Erişim: 04 Mart 2025. [Çevrimiçi]. Erişim adresi: http://www.academicjournals.org/IJPS
  • [40] K. A. Helal, A. M. Tahwia, ve O. Youssf, “Assessment of the efficiency of hybrid basalt fibre sustainable ECC incorporating industrial waste materials”, Constr Build Mater, c. 461, s. 139933, Oca. 2025, doi: 10.1016/J.CONBUILDMAT.2025.139933.
  • [41] D. Zhang, J. Yu, H. Wu, B. Jaworska, B. R. Ellis, ve V. C. Li, “Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC)”, Compos B Eng, c. 184, s. 107741, Mar. 2020, doi: 10.1016/J.COMPOSITESB.2020.107741.
  • [42] A. Saljoughian, H. Bahmani, Z. Ansari, N. Jafari, ve D. Mostofinejad, “An eco-friendly ECC with high slag and polypropylene fiber content for high-tensile strain applications”, Journal of Building Engineering, c. 91, s. 109726, Ağu. 2024, doi: 10.1016/J.JOBE.2024.109726.
  • [43] S. R. Abid, M. S. Shamkhi, N. S. Mahdi, ve Y. H. Daek, “Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers”, Constr Build Mater, c. 187, ss. 168-177, Eki. 2018, doi: 10.1016/J.CONBUILDMAT.2018.07.194.
  • [44] W. Zhang, C. Yin, F. Ma, ve Z. Huang, “Mechanical Properties and Carbonation Durability of Engineered Cementitious Composites Reinforced by Polypropylene and Hydrophilic Polyvinyl Alcohol Fibers”, Materials 2018, Vol. 11, Page 1147, c. 11, sy 7, s. 1147, Tem. 2018, doi: 10.3390/MA11071147.
  • [45] C. Ding, L. Guo, ve B. Chen, “An optimum polyvinyl alcohol fiber length for reinforced high ductility cementitious composites based on theoretical and experimental analyses”, Constr Build Mater, c. 259, s. 119824, Eki. 2020, doi: 10.1016/J.CONBUILDMAT.2020.119824.
  • [46] S. H. Said, H. A. Razak, ve I. Othman, “Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers”, Constr Build Mater, c. 75, ss. 176-188, Oca. 2015, doi: 10.1016/J.CONBUILDMAT.2014.10.036.
  • [47] “Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)”, Oca. 2020, doi: 10.1520/C0109_C0109M-20.
  • [48] “Test Method for Pulse Velocity Through Concrete”, Nis. 2016, doi: 10.1520/C0597-16.
  • [49] M. Hou ve V. C. Li, “Tailoring crack width control of LC3-based engineered cementitious composites (ECC) via fiber hybridization: From micromechanics design to macro investigation”, Mater Des, c. 235, s. 112433, Kas. 2023, doi: 10.1016/J.MATDES.2023.112433.
  • [50] J. X. Lin vd., “Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers”, Journal of Building Engineering, c. 29, s. 101097, May. 2020, doi: 10.1016/J.JOBE.2019.101097.
  • [51] “Test Method for Railway applications - Track - Concrete sleepers and bearers - Part 1: General requirements”, Ara.. 2016.
  • [52] E. Özbay, M. Şahmaran, M. Lachemi, ve H. E. Yücel, “Self-Healing of Microcracks in High-Volume Fly-Ash- Incorporated Engineered Cementitious Composites”, Materials Journal, c. 110, sy 1, ss. 33-44, Oca. 2013, doi: 10.14359/51684371.
  • [53] C. L. Wong, K. H. Mo, S. P. Yap, U. J. Alengaram, ve T. C. Ling, “Potential use of brick waste as alternate concrete-making materials: A review”, J Clean Prod, c. 195, ss. 226-239, Eyl. 2018, doi: 10.1016/J.JCLEPRO.2018.05.193.
  • [54] B. Prakash, T. J. Saravanan, K. I. S. A. Kabeer, ve K. Bisht, “Exploring the potential of waste marble powder as a sustainable substitute to cement in cement-based composites: A review”, Constr Build Mater, c. 401, s. 132887, Eki. 2023, doi: 10.1016/J.CONBUILDMAT.2023.132887.
  • [55] D. Zhang, B. Jaworska, H. Zhu, K. Dahlquist, ve V. C. Li, “Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3)”, Cem Concr Compos, c. 114, s. 103766, Kas. 2020, doi: 10.1016/J.CEMCONCOMP.2020.103766.
  • [56] N. Bheel vd., “Effect of calcined clay and marble dust powder as cementitious material on the mechanical properties and embodied carbon of high strength concrete by using RSM-based modelling”, Heliyon, c. 9, sy 4, s. e15029, Nis. 2023, doi: 10.1016/J.HELIYON.2023.E15029/ASSET/81C8A489-3DA8-412C-993F-BCC287FE0DBF/MAIN.ASSETS/GR8_LRG.JPG.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri, Kompozit ve Hibrit Malzemeler
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Fatih Yıldızhan 0000-0002-1637-3210

Hasan Erhan Yücel 0000-0001-7632-2653

Mustafa Günal 0000-0002-6787-2466

Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 29 Haziran 2025
Kabul Tarihi 22 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 22

Kaynak Göster

IEEE F. Yıldızhan, H. E. Yücel, ve M. Günal, “Atık Tuğla, Atık Mermer ve PP Lif İçeren Sürdürülebilir ECC’lerin Travers ve Balastsız Üstyapı Olarak Kullanımının Değerlendirilmesi”, Demiryolu Mühendisliği, sy. 22, ss. 132–146, Temmuz2025, doi: 10.47072/demiryolu.1729747.