Araştırma Makalesi
BibTex RIS Kaynak Göster

KONTEYNER GEMILERININ ELEKTRIK TAHRIK SISTEMLERININ ENERJI VERIMLILIĞININ İNCELENMESI

Yıl 2025, Cilt: 7 Sayı: 2, 192 - 214
https://doi.org/10.54410/denlojad.1830167

Öz

Deniz taşımacılığı, küresel ticaret için kritik öneme sahiptir ve yılda 10 milyar tondan fazla konteyner taşımaktadır. Dizel motorlar gibi geleneksel tahrik sistemleri yıllardır kullanılmaktadır, ancak artan çevresel etkiler nedeniyle Uluslararası Denizcilik Örgütü (IMO) alternatif çözümler için baskı yapmaktadır. 2019 yılında, konteyner gemileri dâhil uluslararası deniz taşımacılığı, küresel sera gazı emisyonlarının %2,1’ini oluşturmuştur. Bu çalışmanın amacı, dizel elektrik tahrik sisteminin verimliliğini artırmaktır. Bu tür alternatif çözümlerden birini değerlendirmek amacıyla, bu çalışma bir açık deniz konteyner gemisinin dizel-elektrik (DE) tahrik sistemini simüle ederek üç senaryo kapsamında yakıt tüketimini ve emisyonları değerlendirmiştir. Yük profili, geminin seyir verileri kullanılarak oluşturulmuş; simülasyon, jeneratörlerin maksimum yükte çalışmasını sağlayacak ve bataryaların güç dengesine katkıda bulunacağı yapılandırmalar geliştirmeyi hedeflemiştir. Liman veya kıyı bölgesinde çalışan gemilerle sınırlı önceki çalışmalardan farklı olarak, önerilen yaklaşım; batarya destekli işletme ve sıfır emisyonlu liman uyumunu da içeren üç farklı tahrik senaryosunu, bütüncül bir metodolojik yapı içerisinde değerlendirmektedir. Bu çalışmada konteyner gemi tipi, sık manevra yapması ve bu süreçlerde değişken makine yükleri altında çalışması nedeniyle seçilmiştir. Sonuçlar üç senaryoya göre sırasıyla yakıt tüketiminde 2,9 % , 5,3 % ve 10,38 % azalma olduğunu göstermektedir

Kaynakça

  • Chin, Cheng Siong, Yan-Jie Tan, and Mohan Venkatesh Kumar. 2022. "Study of Hybrid Propulsion Systems for Lower Emissions and Fuel Saving on Merchant Ship during Voyage" Journal of Marine Science and Engineering 10, no. 3: 393. https://doi.org/10.3390/jmse10030393
  • Choi, Eunbae, and Heemoon Kim. 2024. "Advanced Energy Management System for Generator–Battery Hybrid Power System in Ships: A Novel Approach with Optimal Control Algorithms" Journal of Marine Science and Engineering 12, no. 10: 1755. https://doi.org/10.3390/jmse12101755
  • Halff, A., 2017. Slow Steaming To 2020: Innovation and Inertia in Marine Transport and Fuels. Cent. Glob. Energy Policy Columbia /Sipa.
  • IMO, 2023. 2023 IMO Strategy on Reduction of GHG Emissions from Ships. https://www.imo.org/en/ourwork/environment/pages/2023-imo-strategy-on-reduction-of-ghg-emissions-from-ships.aspx
  • Inal, O., Charpentier, J.-F., Deniz, C., 2022. Hybrid power and propulsion systems for ships: Current status and future challenges. Renew. Sustain. Energy Rev. 156. https://doi.org/10.1016/j.rser.2021.111965
  • Investing, 2023. Currency Rates [WWW Document]. URL https://tr.investing.com/currencies/usd-try (accessed 10.18.23).
  • Jeong, B., Oguz, E., Wang, H., Zhou, P., 2018. Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives. Appl. Energy 230, 1065–1081. https://doi.org/10.1016/j.apenergy.2018.09.074
  • Kolar, J.W., Drofenik, U., Biela, J., Heldwein, M., Ertl, H., Friedli, T., Round, S., 2008. PWM converter power density barriers. IEEJ Trans. Ind. Appl. 128, 1–14. https://doi.org/10.1541/ieejias.128.468
  • Longva, T., 2000. CO2 Emissions From Deforestation 377, 25.
  • On, J., Fagan, L.L., 2022. 27th Commandant of the Coast.
  • Ozispa, N., 2021. How Ports Can Improve Their Sustainability Performance: Triple Bottom Line Approach. J. Eta Marit. Sci. 9, 41–50. https://doi.org/10.4274/jems.2021.53765
  • Pamik, M., Nuran, M., 2021. The Historical Process of the Diesel Electric Propulsion System. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Derg. 13, 299–316. https://doi.org/10.18613/deudfd.932650
  • Sakalis, G.N., Frangopoulos, C.A., 2018. Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines. Appl. Energy 226, 991–1008. https://doi.org/10.1016/j.apenergy.2018.06.061
  • Sciarretta, A., Serrao, L., Dewangan, P.C., Tona, P., Bergshoeff, E.N.D., Bordons, C., Charmpa, L., Elbert, P., Eriksson, L., Hofman, T., Hubacher, M., Isenegger, P., Lacandia, F., Laveau, A., Li, H., Marcos, D., Nüesch, T., Onori, S., Pisu, P., Rios, J., Silvas, E., Sivertsson, M., Tribioli, L., van der Hoeven, A.J., Wu, M., 2014. A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Eng. Pract. 29, 287–298. https://doi.org/10.1016/j.conengprac.2013.11.020
  • Ship and Bunker, 2023. Bunker Prices [WWW Document]. URL https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average (accessed 10.18.23).
  • Silvas, E., Hofman, T., Serebrenik, A., Steinbuch, M., 2015. Functional and Cost-Based Automatic Generator for Hybrid Vehicles Topologies. IEEE/ASME Trans. Mechatronics 20, 1561–1572. https://doi.org/10.1109/TMECH.2015.2405473
  • Tay, Z.Y., Konovessis, D., 2023. Sustainable energy propulsion system for sea transport to achieve United Nations sustainable development goals: a review. Discov. Sustain. https://doi.org/10.1007/s43621-023-00132-y
  • TUİK, 2022. Electric&Natural Gas Prices [WWW Document]. URL https://data.tuik.gov.tr/Bulten/Index?p=Electricity-and-Natural-Gas-Prices-Period-I:-January-June,-2022-45567#:~:text=TÜİK Kurumsal&text=Sanayide 2022 yılı I. dönem,ortalama 217%2C4 kuruş oldu. (accessed 10.18.23).
  • Viran, A., Mentes, A., 2021. Assessment of propulsion systems performance in tugboat. GİDB Dergi (Istanbul Tech. Univ. 53 – 66.
  • Völker, T., 2015. Hybrid propulsion concepts on ships Harbor Tug Description of harbor tug Load profiles for harbor Tug. Sci. J. Gdynia Marit. Univ. 11–16.
  • Wang, H., Liu, Y., Wang, S., Zhen, L., 2023. Optimal Ship Deployment and Sailing Speed under Alternative Fuels. J. Mar. Sci. Eng. 11, 1809. https://doi.org/10.3390/jmse11091809
  • Weintrit, A., Neumann, T., 2011. Miscellaneous Problems in Maritime Navigation, Transport and Shipping. Marine Navigation and Safety of Sea Transportation.
  • Zahedi, B., Norum, L.E., 2013. Modeling and simulation of all-electric ships with low-voltage DC hybrid power systems. IEEE Trans. Power Electron. 28, 4525–4537. https://doi.org/10.1109/TPEL.2012.2231884
  • Zhou, Y., Pazouki, K., Norman, R., Gao, H., Lin, Z., 2023. An Experimental Investigation into the Feasibility of a DC Hybrid Power Plant for a Northern Sea Route Ship. J. Mar. Sci. Eng. 11, 1653. https://doi.org/10.3390/jmse11091653

EXAMINATION OF THE ENERGY EFFICIENCY OF CONTAINER SHIP ELECTRIC PROPULSION SYSTEMS

Yıl 2025, Cilt: 7 Sayı: 2, 192 - 214
https://doi.org/10.54410/denlojad.1830167

Öz

Maritime transport is crucial for global trade, transporting over 10 billion tons of containers annually. Conventional propulsion systems like diesel engines have been used for years, but the International Maritime Organization (IMO) is pushing for alternative solutions due to increasing environmental impacts. In 2019, international shipping, including container ships, accounted for 2.1% of global greenhouse gas emissions. The study aimed to improve the efficiency of the diesel electric propulsion system. To evaluate one such solution, this study simulated an offshore container ship’s diesel-electric (DE) propulsion system, assessing fuel consumption and emissions across three scenarios. The load profile was created using the ship’s navigation data, and the simulation aimed to build configurations for generators to run at maximum load and batteries to contribute to power balance. Unlike prior works limited to port or coastal vessels, the proposed approach evaluates three distinct propulsion scenarios, including battery-assisted operation and zero-emission port adaptation, within a unified methodological structure. This study selected the container ship type because it frequently performs maneuvering operations and operates under variable engine load conditions during these periods. The results of three scenarios indicate fuel consumption reductions of 2.9%, 5.3%, and 10.38% respectively

Kaynakça

  • Chin, Cheng Siong, Yan-Jie Tan, and Mohan Venkatesh Kumar. 2022. "Study of Hybrid Propulsion Systems for Lower Emissions and Fuel Saving on Merchant Ship during Voyage" Journal of Marine Science and Engineering 10, no. 3: 393. https://doi.org/10.3390/jmse10030393
  • Choi, Eunbae, and Heemoon Kim. 2024. "Advanced Energy Management System for Generator–Battery Hybrid Power System in Ships: A Novel Approach with Optimal Control Algorithms" Journal of Marine Science and Engineering 12, no. 10: 1755. https://doi.org/10.3390/jmse12101755
  • Halff, A., 2017. Slow Steaming To 2020: Innovation and Inertia in Marine Transport and Fuels. Cent. Glob. Energy Policy Columbia /Sipa.
  • IMO, 2023. 2023 IMO Strategy on Reduction of GHG Emissions from Ships. https://www.imo.org/en/ourwork/environment/pages/2023-imo-strategy-on-reduction-of-ghg-emissions-from-ships.aspx
  • Inal, O., Charpentier, J.-F., Deniz, C., 2022. Hybrid power and propulsion systems for ships: Current status and future challenges. Renew. Sustain. Energy Rev. 156. https://doi.org/10.1016/j.rser.2021.111965
  • Investing, 2023. Currency Rates [WWW Document]. URL https://tr.investing.com/currencies/usd-try (accessed 10.18.23).
  • Jeong, B., Oguz, E., Wang, H., Zhou, P., 2018. Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives. Appl. Energy 230, 1065–1081. https://doi.org/10.1016/j.apenergy.2018.09.074
  • Kolar, J.W., Drofenik, U., Biela, J., Heldwein, M., Ertl, H., Friedli, T., Round, S., 2008. PWM converter power density barriers. IEEJ Trans. Ind. Appl. 128, 1–14. https://doi.org/10.1541/ieejias.128.468
  • Longva, T., 2000. CO2 Emissions From Deforestation 377, 25.
  • On, J., Fagan, L.L., 2022. 27th Commandant of the Coast.
  • Ozispa, N., 2021. How Ports Can Improve Their Sustainability Performance: Triple Bottom Line Approach. J. Eta Marit. Sci. 9, 41–50. https://doi.org/10.4274/jems.2021.53765
  • Pamik, M., Nuran, M., 2021. The Historical Process of the Diesel Electric Propulsion System. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Derg. 13, 299–316. https://doi.org/10.18613/deudfd.932650
  • Sakalis, G.N., Frangopoulos, C.A., 2018. Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines. Appl. Energy 226, 991–1008. https://doi.org/10.1016/j.apenergy.2018.06.061
  • Sciarretta, A., Serrao, L., Dewangan, P.C., Tona, P., Bergshoeff, E.N.D., Bordons, C., Charmpa, L., Elbert, P., Eriksson, L., Hofman, T., Hubacher, M., Isenegger, P., Lacandia, F., Laveau, A., Li, H., Marcos, D., Nüesch, T., Onori, S., Pisu, P., Rios, J., Silvas, E., Sivertsson, M., Tribioli, L., van der Hoeven, A.J., Wu, M., 2014. A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Eng. Pract. 29, 287–298. https://doi.org/10.1016/j.conengprac.2013.11.020
  • Ship and Bunker, 2023. Bunker Prices [WWW Document]. URL https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average (accessed 10.18.23).
  • Silvas, E., Hofman, T., Serebrenik, A., Steinbuch, M., 2015. Functional and Cost-Based Automatic Generator for Hybrid Vehicles Topologies. IEEE/ASME Trans. Mechatronics 20, 1561–1572. https://doi.org/10.1109/TMECH.2015.2405473
  • Tay, Z.Y., Konovessis, D., 2023. Sustainable energy propulsion system for sea transport to achieve United Nations sustainable development goals: a review. Discov. Sustain. https://doi.org/10.1007/s43621-023-00132-y
  • TUİK, 2022. Electric&Natural Gas Prices [WWW Document]. URL https://data.tuik.gov.tr/Bulten/Index?p=Electricity-and-Natural-Gas-Prices-Period-I:-January-June,-2022-45567#:~:text=TÜİK Kurumsal&text=Sanayide 2022 yılı I. dönem,ortalama 217%2C4 kuruş oldu. (accessed 10.18.23).
  • Viran, A., Mentes, A., 2021. Assessment of propulsion systems performance in tugboat. GİDB Dergi (Istanbul Tech. Univ. 53 – 66.
  • Völker, T., 2015. Hybrid propulsion concepts on ships Harbor Tug Description of harbor tug Load profiles for harbor Tug. Sci. J. Gdynia Marit. Univ. 11–16.
  • Wang, H., Liu, Y., Wang, S., Zhen, L., 2023. Optimal Ship Deployment and Sailing Speed under Alternative Fuels. J. Mar. Sci. Eng. 11, 1809. https://doi.org/10.3390/jmse11091809
  • Weintrit, A., Neumann, T., 2011. Miscellaneous Problems in Maritime Navigation, Transport and Shipping. Marine Navigation and Safety of Sea Transportation.
  • Zahedi, B., Norum, L.E., 2013. Modeling and simulation of all-electric ships with low-voltage DC hybrid power systems. IEEE Trans. Power Electron. 28, 4525–4537. https://doi.org/10.1109/TPEL.2012.2231884
  • Zhou, Y., Pazouki, K., Norman, R., Gao, H., Lin, Z., 2023. An Experimental Investigation into the Feasibility of a DC Hybrid Power Plant for a Northern Sea Route Ship. J. Mar. Sci. Eng. 11, 1653. https://doi.org/10.3390/jmse11091653
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gemi Ana ve Yardımcı Makineleri, Gemi Elektroniği, Kontrol ve Otomasyonu, Gemilerde Enerji Verimliliği
Bölüm Araştırma Makalesi
Yazarlar

Murat Pamık 0000-0003-3268-1368

Mustafa Nuran 0000-0003-2779-7980

Gönderilme Tarihi 25 Kasım 2025
Kabul Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Pamık, M., & Nuran, M. (2025). EXAMINATION OF THE ENERGY EFFICIENCY OF CONTAINER SHIP ELECTRIC PROPULSION SYSTEMS. Mersin Üniversitesi Denizcilik ve Lojistik Araştırmaları Dergisi, 7(2), 192-214. https://doi.org/10.54410/denlojad.1830167

                                                          Mersin University Journal of Maritime and Logistics Research