BibTex RIS Kaynak Göster

EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI

Yıl 2008, Cilt: 23 Sayı: 2 - Cilt: 23 Sayı: 2, 213 - 227, 25.07.2016

Öz

Finansal derecelendirme kuruluşları sayısal değerlendirme yerine dilsel değerlendirmeyi yaygın olarak kullanırlar. Verilerin çoğunlukla niteleyici olduğu ve uzmanlık bilgisine gereksinim duyulduğu durumlarda Bulanık Set Teorisi bu tür verilerin değerlendirilmesine destek vermektedir. Çalışma kapsamında, emeklilik fonlarının risk ve getiri bilgilerini kullanarak performans değerlendirmesi amacıyla bulanık uzman sistem geliştirilmiş ve rasgele seçilen yirmi yedi Türk emeklilik fonu üzerinde uygulama gerçekleştirilmiştir.

Kaynakça

  • ACAR BOYACIOĞLU, M. (2002), “Operasyonel Risk ve Yönetimi”, Bankacılar Dergisi, 43.
  • AKGÜÇ, Ö. (1994), Finansal Yönetim, Avcıol Basım-Yayın, İstanbul.
  • AMBACHTSHEER, K., R. CAPELLE, ve T. SCHEIBELHUT, (1998), “Improving Pension Fund Performance”, Financial Analyst Journal, 54(6).
  • COGGIN, D.T., ve F.J. FABOZZI (1993), “The Investment Performance of U.S. Equity Pension Fund Managers: An Empirical Investigation”, The Journal of Finance, 48(3) 1039-155.
  • DWEIRI, F.T. ve M.M. KABLAN (2006), “Using Fuzzy Decision Making for the Evaluation of the Project Management Internal Efficiency”, Decision Support Systems, 42(2), 712-726.
  • EXLEY, J.(2003), “Pension Funds and the U.K. Economy”, Presented at the Great Con-Controversy: Current Pension Actuarial Practice in Light of Financial Economics Symposium, Vancouver.
  • KEMP, M., M.CUMBERWORTH, D.GARDNER, , J. GRIFFITHS, ve C. SANFORD (2000), “Portfolio Risk Measurement and Reporting: An Overview for Pension Funds”, http://www.actuaries.org.uk/files/pdf/ Finance_invest/kemp.pdf
  • KESHWANI, D.R., D.D. JONES, G.E. MEYER ve R.M. BRAND (2008), “Rule-Based Mamdani-type Fuzzy Modeling of Skin Permeability”, Applied Soft Computing, 8(1), 285- 294.
  • KLIR G.J. ve B. YUAN (1995) Fuzzy Sets and Fuzzy Logic: Theory and Application, Prentice Hall, New Jersey.
  • LIN H.Y., P.Y. HSU ve G. J. SHEEN, (2007), “A Fuzzy-Based Decision- Making Procedure for Data Warehouse System Selection”, Expert Systems with Applications, 32(3): 939-953.
  • PEDRYCZ W. ve F., GOMIDE, (1998) An Introduction to Fuzzy Sets: Analysis and Design, MIT Press, Cambridge.
  • PLANTIGA A. (2006), “Performance Measurement for Pension Funds”, Research Report, University of Groningen, Research Institute SOM.
  • PUTTONEN V. ve S. TORSTILA (2002), “Risk Management in Finnish Pension Funds: A Survey”, Helsinki School of Economics in Spring 2002 as a part of the course ‘Advanced Risk Management (28E300)’.
  • RADOJEVIC, D. ve S.PETROVIC (1997), “A Fuzzy Approach to Preference Structure in Multicriteria Ranking”, International Transactions in Operational Research, 4(5-6): 419-430.
  • RESMİ GAZETE, No: 24681, Tarih: 28 Şubat 2002, “Emeklilik Yatırım Fonlarının Kuruluş ve Faaliyetlerine İlişkin Esaslar Hakkında Yönetmelik”
  • SILER, William, ve James J. BUCKLEY (2004), Fuzzy Expert Systems and Fuzzy Reasoning, Wiley-Interscience.
  • SOYLU, S. (2004), Emeklilik Yatırım Fonlarının Yönetimi, Ankara, 19-42.
  • SRINIVAS, P.S., E. WHITEHOUSE, ve J. YERMO (2000), “Regulating Private Pension Funds’ Structure, Performance and Investments: Cross- Country Evidence”, Social Protection Discussion Paper Series, No: 0113, 8-11.
  • STANKO D. (2003), “Performance Evaluation of Public Pension Funds: The Reformed Pension System in Poland”, The Pension Institute, Birbeck College, University of London, ISSN 1367-580X.
  • ŞEN, Zekai (2004), Mühendislikte Bulanık Mantık İle Modelleme Prensipleri, Su Vakfı Yayınları.
  • ZADEH, L. A. (1965), Fuzzy Sets and Systems, In: Fox J, Editor, System Theory, Brooklyn, NY: Polytechnic Press; 29–39.
  • ZADEH, L. A. (1965), “Fuzzy Sets”, Information Control, 8(3), 338–353.
  • ZADEH, L.A.(1983), “The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems”, Fuzzy Sets and Systems, 11(1-3):197- 198.
  • ZIMMERMANN, J.-H., (1996), Fuzzy Set Theory- and Its Applications. Third Edition, Kluwer Academic Publishers, U.S.A.

PERFORMANCE EVALUATION OF PENSION FUNDS WITH FUZZY EXPERT SYSTEM

Yıl 2008, Cilt: 23 Sayı: 2 - Cilt: 23 Sayı: 2, 213 - 227, 25.07.2016

Öz

Financial rating and ranking firms often use linguistic instead of numerical values. When input data are mostly qualitative and are based on subjective knowledge of experts, the Fuzzy Set Theory provides a solid mathematical model to represent and handle these data. The aim of this study is developing a fuzzy expert model to evaluate the performance of the pension funds by using their risk and return values. The method is used for evaluating the performance of the randomly selected of twenty seven Turkish pension funds. The obtained results proved that the fuzzy expert system is appropriate and consistent for performance evaluation.

Kaynakça

  • ACAR BOYACIOĞLU, M. (2002), “Operasyonel Risk ve Yönetimi”, Bankacılar Dergisi, 43.
  • AKGÜÇ, Ö. (1994), Finansal Yönetim, Avcıol Basım-Yayın, İstanbul.
  • AMBACHTSHEER, K., R. CAPELLE, ve T. SCHEIBELHUT, (1998), “Improving Pension Fund Performance”, Financial Analyst Journal, 54(6).
  • COGGIN, D.T., ve F.J. FABOZZI (1993), “The Investment Performance of U.S. Equity Pension Fund Managers: An Empirical Investigation”, The Journal of Finance, 48(3) 1039-155.
  • DWEIRI, F.T. ve M.M. KABLAN (2006), “Using Fuzzy Decision Making for the Evaluation of the Project Management Internal Efficiency”, Decision Support Systems, 42(2), 712-726.
  • EXLEY, J.(2003), “Pension Funds and the U.K. Economy”, Presented at the Great Con-Controversy: Current Pension Actuarial Practice in Light of Financial Economics Symposium, Vancouver.
  • KEMP, M., M.CUMBERWORTH, D.GARDNER, , J. GRIFFITHS, ve C. SANFORD (2000), “Portfolio Risk Measurement and Reporting: An Overview for Pension Funds”, http://www.actuaries.org.uk/files/pdf/ Finance_invest/kemp.pdf
  • KESHWANI, D.R., D.D. JONES, G.E. MEYER ve R.M. BRAND (2008), “Rule-Based Mamdani-type Fuzzy Modeling of Skin Permeability”, Applied Soft Computing, 8(1), 285- 294.
  • KLIR G.J. ve B. YUAN (1995) Fuzzy Sets and Fuzzy Logic: Theory and Application, Prentice Hall, New Jersey.
  • LIN H.Y., P.Y. HSU ve G. J. SHEEN, (2007), “A Fuzzy-Based Decision- Making Procedure for Data Warehouse System Selection”, Expert Systems with Applications, 32(3): 939-953.
  • PEDRYCZ W. ve F., GOMIDE, (1998) An Introduction to Fuzzy Sets: Analysis and Design, MIT Press, Cambridge.
  • PLANTIGA A. (2006), “Performance Measurement for Pension Funds”, Research Report, University of Groningen, Research Institute SOM.
  • PUTTONEN V. ve S. TORSTILA (2002), “Risk Management in Finnish Pension Funds: A Survey”, Helsinki School of Economics in Spring 2002 as a part of the course ‘Advanced Risk Management (28E300)’.
  • RADOJEVIC, D. ve S.PETROVIC (1997), “A Fuzzy Approach to Preference Structure in Multicriteria Ranking”, International Transactions in Operational Research, 4(5-6): 419-430.
  • RESMİ GAZETE, No: 24681, Tarih: 28 Şubat 2002, “Emeklilik Yatırım Fonlarının Kuruluş ve Faaliyetlerine İlişkin Esaslar Hakkında Yönetmelik”
  • SILER, William, ve James J. BUCKLEY (2004), Fuzzy Expert Systems and Fuzzy Reasoning, Wiley-Interscience.
  • SOYLU, S. (2004), Emeklilik Yatırım Fonlarının Yönetimi, Ankara, 19-42.
  • SRINIVAS, P.S., E. WHITEHOUSE, ve J. YERMO (2000), “Regulating Private Pension Funds’ Structure, Performance and Investments: Cross- Country Evidence”, Social Protection Discussion Paper Series, No: 0113, 8-11.
  • STANKO D. (2003), “Performance Evaluation of Public Pension Funds: The Reformed Pension System in Poland”, The Pension Institute, Birbeck College, University of London, ISSN 1367-580X.
  • ŞEN, Zekai (2004), Mühendislikte Bulanık Mantık İle Modelleme Prensipleri, Su Vakfı Yayınları.
  • ZADEH, L. A. (1965), Fuzzy Sets and Systems, In: Fox J, Editor, System Theory, Brooklyn, NY: Polytechnic Press; 29–39.
  • ZADEH, L. A. (1965), “Fuzzy Sets”, Information Control, 8(3), 338–353.
  • ZADEH, L.A.(1983), “The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems”, Fuzzy Sets and Systems, 11(1-3):197- 198.
  • ZIMMERMANN, J.-H., (1996), Fuzzy Set Theory- and Its Applications. Third Edition, Kluwer Academic Publishers, U.S.A.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA38EY49FN
Bölüm Makaleler
Yazarlar

Serdar Korukoğlu Bu kişi benim

Serkan Ballı Bu kişi benim

Ayşen Korukoğlu Bu kişi benim

Yayımlanma Tarihi 25 Temmuz 2016
Yayımlandığı Sayı Yıl 2008 Cilt: 23 Sayı: 2 - Cilt: 23 Sayı: 2

Kaynak Göster

APA Korukoğlu, S., Ballı, S., & Korukoğlu, A. (2016). EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 23(2), 213-227.
AMA Korukoğlu S, Ballı S, Korukoğlu A. EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. Temmuz 2016;23(2):213-227.
Chicago Korukoğlu, Serdar, Serkan Ballı, ve Ayşen Korukoğlu. “EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 23, sy. 2 (Temmuz 2016): 213-27.
EndNote Korukoğlu S, Ballı S, Korukoğlu A (01 Temmuz 2016) EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 23 2 213–227.
IEEE S. Korukoğlu, S. Ballı, ve A. Korukoğlu, “EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI”, Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, c. 23, sy. 2, ss. 213–227, 2016.
ISNAD Korukoğlu, Serdar vd. “EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 23/2 (Temmuz 2016), 213-227.
JAMA Korukoğlu S, Ballı S, Korukoğlu A. EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2016;23:213–227.
MLA Korukoğlu, Serdar vd. “EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, c. 23, sy. 2, 2016, ss. 213-27.
Vancouver Korukoğlu S, Ballı S, Korukoğlu A. EMEKLİLİK FONLARININ PERFORMANS DEĞERLENDİRMESİNDE BULANIK UZMAN SİSTEM KULLANIMI. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2016;23(2):213-27.