Derleme
BibTex RIS Kaynak Göster

BÖBREK HASTALIKLARINDA NİTRİK OKSİT SENTAZ AKTİVİTESİ VE DÜZENLENME MEKANİZMALARI

Yıl 2023, , 293 - 307, 25.01.2024
https://doi.org/10.18614/deutip.1231395

Öz

Nitrik oksit (NO) gaz yapıda, 5-6 saniyelik yarılanma ömrüne sahip, birçok fizyolojik ve patolojik olayda görev alan bir moleküldür. Fizyolojik şartlarda böbrekte renal ve glomerüler hemodinamiğin düzenlenmesi, natriürezis, medullar perfüzyon, tübüloglomerüler feedback, tübüler sodyum reabsorbsiyonu ve renal sinir aktivitesi gibi birçok olayda rol almaktadır. NO sentezinin bozulması sonucu çeşitli böbrek hasarı hastalıkları ortaya çıktığından bu mekanizmaların bilinmesi böbrek hasarına yönelik geliştirilecek tedavi yöntemlerinde önemli bir kilit noktasıdır. NO sentezinden sorumlu olan nitrik oksit sentaz (NOS) enzimlerinin insanda tanımlanan üç izoformu; nöronal NOS (nNOS), indüklenebilir NOS (iNOS) ve endotelyal NOS (eNOS)’dur. Bu enzimler ilk bulundukları doku ve işlevlerine göre adlandırılmış olsa da böbrekte geniş bir lokalizasyona sahip ve birçok böbrek hastalığıyla ilişkilendirilmiş enzimlerdir. Böbrek hastalıklarıyla ilgili yapılan çalışmalarda NO düzeyi ve NOS enzim aktivitesindeki değişiklikler önemli rol oynadığından, NOS’ların düzenlenmesinden sorumlu moleküler mekanizmalar birçok çalışmanın temelini oluşturmaktadır. Bu nedenle, bu derlemede NOS’ların moleküler düzenlenme mekanizmaları ve çeşitli böbrek hastalıklarıyla olan ilişkisi incelenmiş, bu mekanizmalara bütüncül bir bakış açısıyla böbrek patofizyolojisinde NO’nun rolü açıklanmaya çalışılmıştır.

Kaynakça

  • 1. Moncada S, Higgs E A. The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology. 2006;147, S193–S201.
  • 2. Garcia X, Stein F. Nitric oxide. Seminars in Pediatric İnfectious Diseases. 2006;17(2):55-57.
  • 3. Mount P F, Power D A. Nitric oxide in the kidney : functions and regulation of synthesis. Acta Physiologica. 2006;187(4):433–446.
  • 4. Förstermann U, Sessa W C. Nitric oxide synthases: regulation and function. European Heart Journal. 2012;33, 829–837.
  • 5. Alderton W K, Cooper C E, Knowles R G. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal. 2001;357,593-615.
  • 6. Sies H, Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology. 2020;21, 363-383.
  • 7. Araujo M, Welch W J. Oxidative stress and nitric oxide in kidney function. Current Opinion in Nephrology and Hypertension. 2006;15:72–77.
  • 8. Nezu M, Suzuki N. Roles of NRF2 in protecting the kidney from oxidative damage. International Journal of Molecular Sciences. 2020;21(8) 2951.
  • 9. Irazabal M V, Torres V E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells. 2020;9(6):1342.
  • 10. Ishimoto Y, Tanaka T, Yoshida Y, Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clinical and Expreimental Pharmacology and Physiology, 2018;45(11):1097-1105.
  • 11. Cavdar Z, Ozbal S, Celik A, Ergur B U, Guneli E, Ural C, et al. The effects of alpha-lipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model. Biotech Histochem., 2014;89(4):304-14.
  • 12. Cavdar Z, Oktan M A, Ural C, Calisir M, Kocak A, Heybeli C, et al. Renoprotective Effects of Alpha Lipoic Acid on Iron Overload-Induced Kidney Injury in Rats by Suppressing NADPH Oxidase 4 and p38 MAPK Signaling. Biol Trace Elem Res. 2020;193(2):483-493.
  • 13. Cavdar Z, Oktan M A, Ural C, Kocak A, Calisir M, Heybeli C, et al. Alpha lipoic acid attenuates iron induced oxidative acute kidney injury in rats. Biotechnic & Histochemistry. 2021;96(6):409-417.
  • 14. Oktan M A, Heybeli C, Ural C, Kocak A, Bilici G, Cavdar Z, et al. Alpha-lipoic acid alleviates colistin nephrotoxicity in rats. Human and Experimental Toxicology. 2021;40(5):761-771.
  • 15. Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nature Reviews Nephrology. 2021;0123456789.
  • 16. Majid D S, Navar L G. Nitric oxide in the control of renal hemodynamics and excretory function. American Journal of Hypertension. 2001;14(6 Pt 2):74S–82S.
  • 17. Granger J P, Alexander B T. Abnormal pressure-natriuresis in hypertension: role of nitric oxide. Acta Physiologica Scandinavica, 2000;168(1):161-8.
  • 18. Jin C, Hu C, Polichnowski A, Mori T, Skeleton M, Ito S, et al. Effects of renal perfusion pressure on renal medullary hydrogen peroxide and nitric oxide production. Hypertension. 2019;53(6):1048-53.
  • 19. Vallon V, Thomson S C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews. Nephrology. 2020;16(6):317-336.
  • 20. Ortiz P A, Garvin J L. Role of nitric oxide in the regulation of nephron transport. American Journal of Physiology. Renal Physiology. 2002;282(5):F777–F784.
  • 21. Eppel G A, Denton K M, Malpas S C, Evans R G. Nitric oxide in responses of regional kidney perfusion to renal nerve stimulation and renal ischaemia. Pflugers Archiv: European Journal of Physiology. 2003;447, 205–213.
  • 22. Baylis C. Nitric oxide deficiency in chronic kidney disease. American Journal of Physiology Renal Physiology. 2007;294(1):F1-9.
  • 23. Zatz R, Baylis C. Chronic Nitric Oxide Inhibition Model Six Years On. Hypertension. 1998;32(6):958-64.
  • 24. Zhou L, Zhu D Y. Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide - Biology and Chemistry, 2009;20(4):223–230.
  • 25. Kone B C, Kuncewicz T, Zhang W, Yu Z, Bruce C, Kuncewicz T, et al. Protein interactions with nitric oxide synthases : controlling the right time , the right place , and the right amount of nitric oxide. American Journal of Physiology. Renal Physiology. 2003;285(2):F178–190.
  • 26. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron. 1998; 20(1):115-24.
  • 27. Kone B C. Protein-protein interactions controlling nitric oxide synthases. Acta Phsiologica Scandinavica. 2000;168(1):27-31.
  • 28. Sun H. New kid on the block: NOS1AP is a newly recognized genetic cause of steroid-resistant nephrotic syndrome in infants. Kidney International. 2021;100(3):496-498.
  • 29. Majmundar A J, Buerger F, Forbes T A, Klämbt V, Schneider R, Deutsch K, et al. (2021) Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice. Science Advences. 2021;7(1):eabe1386.
  • 30. Ren Y, Garvin J L, Ito S, Carretero O A. Role of neuronal nitric oxide synthase in the macula densa. Kidney International, 2001;60(5), 1676–1683.
  • 31. Fan J S, Zhang Q, Li M, Tochio H, Yamazaki T, Shimizu M, et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. The Journal of Biological Chemistry. 1998;273: 33472–33481.
  • 32. Roczniak A, Levine D Z, Burns K D. Localization of protein inhibitor of neuronal nitric oxide synthase in rat kidney. American Journal of Physiology. Renal Physiology. 2000;278(5):F702-F707.
  • 33. Osuka K, Watanabe Y, Usuda N, Nakazawa A, Fukunaga K, Miyamoto E, et al. Phosphorylation of Neuronal Nitric Oxide Synthase at Ser847 by CaM-KII in the Hippocampus of Rat Brain After Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism. 2002;22(9):1098-106.
  • 34. Sharma N M, Patel P K. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opinion on Therapeutic Targets. 2017;21(1):11-22.
  • 35. Mount P F, Fraser S A, Watanabe Y, Lane N, Katsis F, Chen Z P, et al. Phosphorylation of Neuronal and Endothelial Nitric Oxide Synthase in the Kidney with High and Low Salt Diets. Nephron. Physiology. 2006;102(2):p36-50.
  • 36. Choi J-Y, Nam S-A, Jin D-C, Kim J, Cha J-H. Expression and Cellular Localization of Inducible Nitric Oxide Synthase in Lipopolysaccharide-treated Rat Kidneys. Journal of Histochemistry & Cytochemistry. 2012;60(4) 301-315. DOI: 10.1369/002215541143613.
  • 37. Fan H, Le J-W, Sun M, Zhu J-H. Pretreatment with S-nitrosoglutathione attenuates septic acute kidney injury in rats by inhibiting inflammation, oxidation, and apoptosis. Biomed Research International. 2021;6678165.
  • 38. Heemskerk S, Pickkers P, Bouw M P W J M, Draisma A, van der Hoeven J G, Peters W H M, et al. Upregulation of Renal Inducible Nitric Oxide Synthase during Human Endotoxemia and Sepsis Is Associated with Proximal Tubule Injury. Clinical Journal of the American Society of Nephrology. 2006;1(4) 853-862.
  • 39. Chirino Y I, Trujillo J, Sanchez-Gonzalez D J, Martinez-Martinez C M, Cruz C, Bobadilla N A. et al. Selective iNOS inhibition reduces renal damage induced by cisplatin. Toxicology Letters. 2008;176(1):48-57.
  • 40. Albrecht E W, Stegeman C A, Heeringa P, Henning R H, Goor H. Protective role of endothelial nitric oxide synthase. The Journal of Pathology. 2002;199(1):8-17.
  • 41. Bucci M, Gratton J P, Rudic R D, Acevedo L, Roviezzo F, Cirino G, et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Medicine. 2000;6(12):1362–1367.
  • 42. Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Frontiers in Physiology. 2013;4:347.
  • 43. Lange C, Mowat F, Sayed H, Mehad M, Duluc L, Piper S, et al. Dimethylarginine dimethylaminohydrolase-2 deficiency promotes vascular regeneration and attenuates pathological angiogenesis. Experimental Eye Research. 2016;147:148-155.
  • 44. Wever R, Boer P, Hijmering M, Stroes E, Verhaar M, Kastelein J, et al. Nitric oxide production is reduced in patients with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999;19(5):1168–1172.
  • 45. Amador-Martínez I, Pérez-Villalva R, Uribe N, Cortés-González C, Bobadilla N A, Barrera-Chimal J. Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. American Journal of Physiology-Renal Physiology. 2019;317(2):F275-F285.
  • 46. Akyurek F, Celik G, Ozturk B. Predictive role of methylargininines in renal failure. Annals of Medical Research. 2020;27(8):2129-33.
  • 47. Mount P F, Kemp B E, Power D A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. Journal of Molecular and Cellular Cardiology. 2007;42(2):271-9.
  • 48. Dedio J, Konig P, Wohlfart P, Schroeder C, Kummer W, Muller-Esterl W. NOSIP, a novel modulator of endothelial nitric oxide synthase activity. The FASEB Journal, 2001;15(1):79-89.
  • 49. Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Müller-Esterl W, et al. Icking A. Translocation of Endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Molecular Biology of the Cell. 2006;17(9):3870-80.
  • 50. Xiang W, Chen H, Xu X, Zhang R, Jiang R. Expression of endothelial nitric oxide synthase traffic inducer in the placentas of women with pre-eclampsia. International Journal of Gynecology & Obstetrics. 2005;89, 103-107.
  • 51. Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S. S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants, 2019;8(9),404.
  • 52. Murphy E, Kohr M, Menazza S, Nguyen T, Evangelista A, Sun J, et al. Signaling by S-nitrosylation in the heart. Journal of Molecular and Cellular Cardiology. 2014;273:18-25.
  • 53. Zhou H L, Zhang R, Anand P, Stomberski C T, Qian Z, Hausladen A, et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature.2019;65(7737):96-100.
  • 54. Heiss E H, Dirsch V M. Regulation of eNOS Enzyme Activity by Posttranslational Modification. Current Pharmaceutical Design. 2014;20(22):3503-3513. Jaffrey S R, Snowman A M, Eliasson M J L, Cohen N A, Snyder S. H. (1998). CAPON : A Protein Associated with Neuronal Nitric Oxide Synthase that Regulates Its Interactions with PSD95. Neuron. 1998;20(1):115–124.
  • 55. Chen L, Wanhg Y, Li S, Zuo B, Zhang X, Wang F, et al. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics. 2020;10(20):9425-9442.

NITRIC OXIDE SYNTHASE ACTIVITY AND REGULATORY MECHANISMS IN RENAL DISEASES

Yıl 2023, , 293 - 307, 25.01.2024
https://doi.org/10.18614/deutip.1231395

Öz

Nitric Oxide (NO) is a gaseous molecule with a half-life of 5-6 seconds, involved in many physiological and pathological events. Under physiological conditions, it plays a role in the regulation of renal and glomerular hemodynamics, natriuresis, medullary perfusion, tubuloglomerular feedback, tubular sodium reabsorption and renal nerve activity. Impairment of NO synthesis causes various kidney diseases. Therefore, the elucidation of these mechanisms is important in the treatment methods to be developed against kidney damage. Three isoforms of nitric oxide synthase (NOS) enzymes have been identified responsible for NO synthesis; neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). Although these enzymes are called according to the tissue and functions in which they were first found, they are enzymes that have a wide localization in the kidney and have been associated with many kidney diseases. In previous studies, it has been shown that kidney diseases are caused by changes in NO level and NOS enzyme activity. Therefore, the molecular mechanisms responsible for the regulation of NOSs form the basis of many studies. In this review, the molecular regulation mechanisms of NOS and their relationship with various kidney diseases were investigated, and the role of NO in the kidney pathophysiology was aimed to explain.

Kaynakça

  • 1. Moncada S, Higgs E A. The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology. 2006;147, S193–S201.
  • 2. Garcia X, Stein F. Nitric oxide. Seminars in Pediatric İnfectious Diseases. 2006;17(2):55-57.
  • 3. Mount P F, Power D A. Nitric oxide in the kidney : functions and regulation of synthesis. Acta Physiologica. 2006;187(4):433–446.
  • 4. Förstermann U, Sessa W C. Nitric oxide synthases: regulation and function. European Heart Journal. 2012;33, 829–837.
  • 5. Alderton W K, Cooper C E, Knowles R G. Nitric oxide synthases: structure, function and inhibition. Biochemical Journal. 2001;357,593-615.
  • 6. Sies H, Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology. 2020;21, 363-383.
  • 7. Araujo M, Welch W J. Oxidative stress and nitric oxide in kidney function. Current Opinion in Nephrology and Hypertension. 2006;15:72–77.
  • 8. Nezu M, Suzuki N. Roles of NRF2 in protecting the kidney from oxidative damage. International Journal of Molecular Sciences. 2020;21(8) 2951.
  • 9. Irazabal M V, Torres V E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells. 2020;9(6):1342.
  • 10. Ishimoto Y, Tanaka T, Yoshida Y, Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clinical and Expreimental Pharmacology and Physiology, 2018;45(11):1097-1105.
  • 11. Cavdar Z, Ozbal S, Celik A, Ergur B U, Guneli E, Ural C, et al. The effects of alpha-lipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model. Biotech Histochem., 2014;89(4):304-14.
  • 12. Cavdar Z, Oktan M A, Ural C, Calisir M, Kocak A, Heybeli C, et al. Renoprotective Effects of Alpha Lipoic Acid on Iron Overload-Induced Kidney Injury in Rats by Suppressing NADPH Oxidase 4 and p38 MAPK Signaling. Biol Trace Elem Res. 2020;193(2):483-493.
  • 13. Cavdar Z, Oktan M A, Ural C, Kocak A, Calisir M, Heybeli C, et al. Alpha lipoic acid attenuates iron induced oxidative acute kidney injury in rats. Biotechnic & Histochemistry. 2021;96(6):409-417.
  • 14. Oktan M A, Heybeli C, Ural C, Kocak A, Bilici G, Cavdar Z, et al. Alpha-lipoic acid alleviates colistin nephrotoxicity in rats. Human and Experimental Toxicology. 2021;40(5):761-771.
  • 15. Carlström M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nature Reviews Nephrology. 2021;0123456789.
  • 16. Majid D S, Navar L G. Nitric oxide in the control of renal hemodynamics and excretory function. American Journal of Hypertension. 2001;14(6 Pt 2):74S–82S.
  • 17. Granger J P, Alexander B T. Abnormal pressure-natriuresis in hypertension: role of nitric oxide. Acta Physiologica Scandinavica, 2000;168(1):161-8.
  • 18. Jin C, Hu C, Polichnowski A, Mori T, Skeleton M, Ito S, et al. Effects of renal perfusion pressure on renal medullary hydrogen peroxide and nitric oxide production. Hypertension. 2019;53(6):1048-53.
  • 19. Vallon V, Thomson S C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews. Nephrology. 2020;16(6):317-336.
  • 20. Ortiz P A, Garvin J L. Role of nitric oxide in the regulation of nephron transport. American Journal of Physiology. Renal Physiology. 2002;282(5):F777–F784.
  • 21. Eppel G A, Denton K M, Malpas S C, Evans R G. Nitric oxide in responses of regional kidney perfusion to renal nerve stimulation and renal ischaemia. Pflugers Archiv: European Journal of Physiology. 2003;447, 205–213.
  • 22. Baylis C. Nitric oxide deficiency in chronic kidney disease. American Journal of Physiology Renal Physiology. 2007;294(1):F1-9.
  • 23. Zatz R, Baylis C. Chronic Nitric Oxide Inhibition Model Six Years On. Hypertension. 1998;32(6):958-64.
  • 24. Zhou L, Zhu D Y. Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide - Biology and Chemistry, 2009;20(4):223–230.
  • 25. Kone B C, Kuncewicz T, Zhang W, Yu Z, Bruce C, Kuncewicz T, et al. Protein interactions with nitric oxide synthases : controlling the right time , the right place , and the right amount of nitric oxide. American Journal of Physiology. Renal Physiology. 2003;285(2):F178–190.
  • 26. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron. 1998; 20(1):115-24.
  • 27. Kone B C. Protein-protein interactions controlling nitric oxide synthases. Acta Phsiologica Scandinavica. 2000;168(1):27-31.
  • 28. Sun H. New kid on the block: NOS1AP is a newly recognized genetic cause of steroid-resistant nephrotic syndrome in infants. Kidney International. 2021;100(3):496-498.
  • 29. Majmundar A J, Buerger F, Forbes T A, Klämbt V, Schneider R, Deutsch K, et al. (2021) Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice. Science Advences. 2021;7(1):eabe1386.
  • 30. Ren Y, Garvin J L, Ito S, Carretero O A. Role of neuronal nitric oxide synthase in the macula densa. Kidney International, 2001;60(5), 1676–1683.
  • 31. Fan J S, Zhang Q, Li M, Tochio H, Yamazaki T, Shimizu M, et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. The Journal of Biological Chemistry. 1998;273: 33472–33481.
  • 32. Roczniak A, Levine D Z, Burns K D. Localization of protein inhibitor of neuronal nitric oxide synthase in rat kidney. American Journal of Physiology. Renal Physiology. 2000;278(5):F702-F707.
  • 33. Osuka K, Watanabe Y, Usuda N, Nakazawa A, Fukunaga K, Miyamoto E, et al. Phosphorylation of Neuronal Nitric Oxide Synthase at Ser847 by CaM-KII in the Hippocampus of Rat Brain After Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism. 2002;22(9):1098-106.
  • 34. Sharma N M, Patel P K. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opinion on Therapeutic Targets. 2017;21(1):11-22.
  • 35. Mount P F, Fraser S A, Watanabe Y, Lane N, Katsis F, Chen Z P, et al. Phosphorylation of Neuronal and Endothelial Nitric Oxide Synthase in the Kidney with High and Low Salt Diets. Nephron. Physiology. 2006;102(2):p36-50.
  • 36. Choi J-Y, Nam S-A, Jin D-C, Kim J, Cha J-H. Expression and Cellular Localization of Inducible Nitric Oxide Synthase in Lipopolysaccharide-treated Rat Kidneys. Journal of Histochemistry & Cytochemistry. 2012;60(4) 301-315. DOI: 10.1369/002215541143613.
  • 37. Fan H, Le J-W, Sun M, Zhu J-H. Pretreatment with S-nitrosoglutathione attenuates septic acute kidney injury in rats by inhibiting inflammation, oxidation, and apoptosis. Biomed Research International. 2021;6678165.
  • 38. Heemskerk S, Pickkers P, Bouw M P W J M, Draisma A, van der Hoeven J G, Peters W H M, et al. Upregulation of Renal Inducible Nitric Oxide Synthase during Human Endotoxemia and Sepsis Is Associated with Proximal Tubule Injury. Clinical Journal of the American Society of Nephrology. 2006;1(4) 853-862.
  • 39. Chirino Y I, Trujillo J, Sanchez-Gonzalez D J, Martinez-Martinez C M, Cruz C, Bobadilla N A. et al. Selective iNOS inhibition reduces renal damage induced by cisplatin. Toxicology Letters. 2008;176(1):48-57.
  • 40. Albrecht E W, Stegeman C A, Heeringa P, Henning R H, Goor H. Protective role of endothelial nitric oxide synthase. The Journal of Pathology. 2002;199(1):8-17.
  • 41. Bucci M, Gratton J P, Rudic R D, Acevedo L, Roviezzo F, Cirino G, et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Medicine. 2000;6(12):1362–1367.
  • 42. Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Frontiers in Physiology. 2013;4:347.
  • 43. Lange C, Mowat F, Sayed H, Mehad M, Duluc L, Piper S, et al. Dimethylarginine dimethylaminohydrolase-2 deficiency promotes vascular regeneration and attenuates pathological angiogenesis. Experimental Eye Research. 2016;147:148-155.
  • 44. Wever R, Boer P, Hijmering M, Stroes E, Verhaar M, Kastelein J, et al. Nitric oxide production is reduced in patients with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999;19(5):1168–1172.
  • 45. Amador-Martínez I, Pérez-Villalva R, Uribe N, Cortés-González C, Bobadilla N A, Barrera-Chimal J. Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. American Journal of Physiology-Renal Physiology. 2019;317(2):F275-F285.
  • 46. Akyurek F, Celik G, Ozturk B. Predictive role of methylargininines in renal failure. Annals of Medical Research. 2020;27(8):2129-33.
  • 47. Mount P F, Kemp B E, Power D A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. Journal of Molecular and Cellular Cardiology. 2007;42(2):271-9.
  • 48. Dedio J, Konig P, Wohlfart P, Schroeder C, Kummer W, Muller-Esterl W. NOSIP, a novel modulator of endothelial nitric oxide synthase activity. The FASEB Journal, 2001;15(1):79-89.
  • 49. Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Müller-Esterl W, et al. Icking A. Translocation of Endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Molecular Biology of the Cell. 2006;17(9):3870-80.
  • 50. Xiang W, Chen H, Xu X, Zhang R, Jiang R. Expression of endothelial nitric oxide synthase traffic inducer in the placentas of women with pre-eclampsia. International Journal of Gynecology & Obstetrics. 2005;89, 103-107.
  • 51. Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S. S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants, 2019;8(9),404.
  • 52. Murphy E, Kohr M, Menazza S, Nguyen T, Evangelista A, Sun J, et al. Signaling by S-nitrosylation in the heart. Journal of Molecular and Cellular Cardiology. 2014;273:18-25.
  • 53. Zhou H L, Zhang R, Anand P, Stomberski C T, Qian Z, Hausladen A, et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature.2019;65(7737):96-100.
  • 54. Heiss E H, Dirsch V M. Regulation of eNOS Enzyme Activity by Posttranslational Modification. Current Pharmaceutical Design. 2014;20(22):3503-3513. Jaffrey S R, Snowman A M, Eliasson M J L, Cohen N A, Snyder S. H. (1998). CAPON : A Protein Associated with Neuronal Nitric Oxide Synthase that Regulates Its Interactions with PSD95. Neuron. 1998;20(1):115–124.
  • 55. Chen L, Wanhg Y, Li S, Zuo B, Zhang X, Wang F, et al. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics. 2020;10(20):9425-9442.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Derlemeler
Yazarlar

Aygül Cemre Şahin 0000-0002-0513-4986

Caner Çavdar 0000-0002-2306-2429

Zahide Çavdar 0000-0002-5457-198X

Yayımlanma Tarihi 25 Ocak 2024
Gönderilme Tarihi 9 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

Vancouver Şahin AC, Çavdar C, Çavdar Z. BÖBREK HASTALIKLARINDA NİTRİK OKSİT SENTAZ AKTİVİTESİ VE DÜZENLENME MEKANİZMALARI. DEU Tıp Derg. 2024;37(3):293-307.