Yıl 2019, Cilt 33 , Sayı 2, Sayfalar 175 - 182 2019-09-27

Kistik Fibrozis Hastalığında Mikro RNA’ların Rolü ve Yeni Tedavi Yaklaşımları Açısından Önemi
The Role of MicroRNAs and Their Importance as Novel Treatment Approaches in Cystic Fibrosis

İlksen Berfin Ekinci [1] , Didem Dayangaç-Erden [2]


Kodlanmayan RNA grubunda yer alan mikroRNA’lar (miRNA) son yıllarda otoimmün hastalıklar, kanser, kardiyovasküler hastalıklar ve bazı solunum yolu hastalıklarında klinik ciddiyet ile ilişkilendirilmiştir ve tedavi hedefi olarak kullanılmalarına ilişkin birçok araştırma gerçekleştirilmiştir. CFTR genindeki mutasyonlar sonucu oluşan ve otozomal resesif kalıtılan solunum sistemi hastalıklarından birisi olan kistik fibroziste günümüze kadar hastalık patogenezi ile ilişkilendirilen çok sayıda miRNA tanımlanmıştır. Bu derlemede, kistik fibrozis hastalığında miRNA’ların rolü, hastalık ciddiyeti ile ilişkisi, miRNA temelli tedavi yaklaşımları ve ileride prognostik ve terapötik biyobelirteç olarak kullanılmalarına yönelik gerçekleştirilen araştırmalar özetlenmiştir.
MicroRNAs (miRNA), which belong to non-coding RNA group, have been associated with clinical severity in autoimmune diseases, cancer, cardiovascular diseases and some respiratory diseases also many studies have been carried out on their use as therapeutic targets in recent years. In cystic fibrosis, one of the autosomal recessive inherited respiratory system diseases caused by mutations in the CFTR gene, many miRNAs associated with the pathogenesis of the disease have been identified. In this review research about the role of miRNAs in cystic fibrosis, their relationship with severity of disease, miRNA based treatment approaches and their use as prognostic and therapeutic biomarkers are summarized.
Kistik fibrozis, CFTR geni, mikroRNA, biyobelirteç
  • 1. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res 2016; 7: 68 – 74.
  • 2. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47: 155 – 162.
  • 3. Zeyer KA, Zhang RM, Kumra H, Hassan A, Reinhardt DP. The Fibrillin-1 RGD Integrin Binding Site Regulates Gene Expression and Cell Function through microRNAs. J Mol Biol 2019; 431: 401 – 421.
  • 4. Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res 2010; 70: 7027 – 7030.
  • 5. Bardin P, Sonneville F, Corvol H, Tabary O. Emerging microRNA Therapeutic Approaches for Cystic Fibrosis. Front Pharmacol 2018; 9: 1 – 11.
  • 6. Glasgow AMA, Santi CD, Greene CM. Non-coding RNA in cystic fibrosis. Biochem Soc Trans 2018; 46: 619 – 630.
  • 7. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843 – 854.
  • 8. Greene J, Baird AM, Brady L et al. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci 2017; 4: 1 – 11.
  • 9. Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A. Cystic fibrosis. Rev Dis Primers 2015; 14: 1 – 19.
  • 10. Mowat A. Why does cystic fibrosis display the prevalence and distribution observed in human populations? Curr Pediatr Res 2017; 21: 164 – 171.
  • 11. Powers CA, Potter EM, Wessel HU, Lloyd-Still JD. Cystic fibrosis in Asian Indians. Arch Pediatr Adolesc Med 1996; 150: 554 – 555.
  • 12. Kiper N, Yalçın E. Dünyada ve Ülkemizde Kistik Fibrozis Hastalığı. J Int Med Sci 2007; 3: 1 – 3.
  • 13. Tsui LC, Dorfman R. The Cystic Fibrosis Gene: A Molecular Genetic Perspective. Cold Spring Harb Perspect Med 2013; 3: a009472.
  • 14. Dayangaç-Erden D, Eskici N, Eşref S et al. FEBS Open Bio. Meeting Abstract. P15-034M. 2018; Suppl. 1: 382-383.
  • 15. O'Neal WK, Knowles MR. Cystic Fibrosis Disease Modifiers: Complex Genetics Defines the Phenotypic Diversity in a Monogenic Disease. Annu Rev Genomics Hum Genet 2018; 19: 201 – 222.
  • 16. Stolzenburg, L, Harris A. The role of microRNAs in chronic respiratory disease: recent insights. Biol Chem 2018; 399: 219 – 234.
  • 17. Oglesby IK, Bray IM, Chotirmall SH et al. miR-126 Is Downregulated in Cystic Fibrosis Airway Epithelial Cells and Regulates TOM1 Expression. Immunol 2010; 184: 1702 – 1709.
  • 18. Oglesby IK, Vencken SF, Agrawal R et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015; 46: 1350 – 1360.
  • 19. Gillen AE, Gosalia N, Leir SH, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 2011; 438: 25 – 32.
  • 20. Bhattacharyya S, Balakathiresan NS, Dalgard C et al. Elevated miR-155 Promotes Inflammation in Cystic Fibrosis by Driving Hyperexpression of Interleukin-8. J Biol Chem 2011; 286: 11604 – 11615.
  • 21. Tsuchiya M, Kalurupalle S, Kumar P et al. RPTOR, a novel target of miR-155, elicits a fibrotic phenotype of cystic fibrosis lung epithelium by upregulating CTGF. RNA Biol 2016; 13: 837 – 847.
  • 22. Megiorni, F, Cialfi, S, Dominic C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR- 494 specific binding. PLoS One 2011; 6: e26601.
  • 23. Ramachandran S, Karp PH, Osterhaus SR et al. Post-Transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by MicroRNAs. Am J Respir Cell Mol Biol 2013; 49: 544 – 551.
  • 24. Viart, V, Bergougnoux A, Bonini J et al. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J 2015; 45: 116 – 128.
  • 25. Tazi MF, Dakhlallah DA, Caution K et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy 2016; 12: 2026 – 2037.
  • 26. Chen, L, Chen R, Velazquez VM, Brigstock DR. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p. Am J Pathol 2016; 186: 2921 – 2933.
  • 27. Sonneville F, Ruffin M, Coraux C et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun 2017; 8: 1 – 11.
  • 28. Marson FAL. Disease-modifying genetic factors in cystic fibrosis. Curr Opin Pulm Med 2018; 24: 296 – 308.
Birincil Dil tr
Konular Tıp
Bölüm Derlemeler
Yazarlar

Orcid: 0000-0003-2508-8857
Yazar: İlksen Berfin Ekinci
Kurum: HACETTEPE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOLOJİ ANABİLİM DALI
Ülke: Turkey


Orcid: 0000-0002-0236-7565
Yazar: Didem Dayangaç-Erden (Sorumlu Yazar)
Kurum: HACETTEPE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOLOJİ ANABİLİM DALI
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 27 Eylül 2019

Vancouver Ekinci İ , Dayangaç-Erden D . Kistik Fibrozis Hastalığında Mikro RNA’ların Rolü ve Yeni Tedavi Yaklaşımları Açısından Önemi. Dokuz Eylül Üniversitesi Tıp Fakültesi Dergisi. 2019; 182-175.