Derleme
BibTex RIS Kaynak Göster

Diş Hekimliğinde Uygulanan İn-Vitro Yaşlandırma Yöntemlerinin Değerlendirilmesi: Geleneksel Bir Derleme

Yıl 2025, Cilt: 7 Sayı: 3, 88 - 100, 28.10.2025

Öz

Amaç:
Dental restoratif materyallerin uzun ömürlülüğü, başarılı klinik sonuçlar için kritik bir faktördür. Bu çalışmanın amacı, restoratif materyallerin ağız içi koşullar altında performansını değerlendirmek için kullanılan yaşlandırma protokollerini analiz etmek, bu yöntemlerin güçlü ve zayıf yönlerini ele almak ve daha iyi simülasyon sağlayacak yeni protokol ihtiyaçlarını vurgulamaktır.
Gereç ve Yöntemler:
Yaşlandırma protokolleri, sıcaklık dalgalanmaları, pH değişimleri, enzimatik aktivite ve mekanik kuvvetler gibi ağız içi koşulları taklit etmek için geliştirilmiştir. Bu yöntemler arasında suda depolama, sodyum hipoklorit (NaOCl) maruziyeti, pH döngüsü, termal döngü ve çiğneme simülasyonu yer alır. Bu teknikler, malzemelerin dayanıklılığını değerlendirmek için hidrolitik bozulma, kimyasal direnç, termal stabilite ve mekanik aşınma gibi performans özelliklerine odaklanmaktadır.
Bulgular:
Her bir yaşlandırma yöntemi, restoratif malzemelerin dayanıklılığı hakkında değerli bilgiler sağlamaktadır. Ancak, mevcut protokoller genellikle ağız boşluğunun karmaşık ve çok faktörlü ortamını tam olarak taklit edememektedir. Bu durum, klinik koşulları daha iyi simüle edebilecek daha sofistike protokollere duyulan ihtiyacı ortaya koymaktadır.
Sonuçlar:
Mevcut yaşlandırma yöntemlerinin avantajları ve sınırlamaları değerlendirildiğinde, klinik bağlamda daha doğru ve güvenilir simülasyon sağlayacak protokollerin geliştirilmesi gerekliliği öne çıkmaktadır. Bu, restoratif materyallerin dayanıklılığını ve klinik etkinliğini artırarak uzun vadeli başarıyı destekleyecektir.

Kaynakça

  • 1. Oskoe SK, Drummond JL, Rockne KJ. The effect of esterase enzyme on aging dental composites. J Biomed Mater Res B Appl Biomater. 2019;107(6):2178-84. [Crossref]
  • 2. Garma NMH, Ibrahim AI. Bond strength survival of a novel calcium phosphate-enriched orthodontic self-etching system after various ageing protocols: An in vitro study. Int J Dent. 2022;2022:3960362. [Crossref] [PubMed] [PMC]
  • 3. Kuscu HY. The effect of different ageing protocols on the shear bond strength of the Ceromer indirect composite on two different substructure materials. Niger J Clin Pract. 2024;27(3):368-75. [Crossref] [PubMed]
  • 4. Mudhaffer S, Haider J, Satterthwaite J, Silikas N. Effects of print orientation and artificial aging on the flexural strength and flexural modulus of 3D printed restorative resin materials. J Prosthet Dent. 2024. [Crossref]
  • 5. Giuseppe MD, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB, Dilley RJ, Doyle BJ. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;79:150-7. [Crossref] [PubMed]
  • 6. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco A. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater. 2014;29:295-308. [Crossref] [PubMed]
  • 7. Melo MA, Moysés MR, Santos SG, Alcântara CE, Ribeiro JC. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs. Braz Oral Res. 2011;25(6):485-91. [Crossref] [PubMed]
  • 8. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater. 2007;23(10):1276-82. [Crossref] [PubMed]
  • 9. Narde J, Ahmed N, Keskar V, Pandurangan KK. Evaluation of the colour stability and surface roughness of polymethylmethacrylate and indirect composites with and without ageing: An in-vitro study. Cureus. 2024;16(8). [Crossref] [PubMed] [PMC]
  • 10. Shahin SY, AlQahtani N, Abushowmi TH, Siddiqui IA, Akhtar S, Nassar EA, Gad MM. The effect of surface treatment and thermal aging on the bonding of clear aligner attachments to provisional resin-based material: shear bond strength analysis. Front Oral Health. 2024;5:1449833. [Crossref] [PubMed] [PMC]
  • 11. Topbaş C, Çınar Ş, Altan B, Şirin DA, Fildişi MA. The effects of different root canal irrigation protocols and artificial aging procedures on the bond strength between dentin and hybrid ceramic posts. BMC Oral Health. 2022;22(1):590. [Crossref] [PubMed] [PMC]
  • 12. Tüfekçi BB, Yeşil Z. Examination of the effect of aging process on marginal fit and fracture strength of temporary crowns prepared from different materials. Heliyon. 2024;10(6). [Crossref] [PubMed] [PMC]
  • 13. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, Lambrechts P, Vanherle G. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res. 2003;82(2):136-40. [Crossref] [PubMed]
  • 14. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, Lambrechts P, Vanherle G. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res. 2003;82(2):136-40. [Crossref] [PubMed]
  • 15. Schepke U, Filius D, Lohbauer U, la Bastide-van Gemert S, Gresnigt MMM, Cune MS. Dimensional changes of CAD/CAM polymer crowns after water aging - An in vitro experiment. J Mech Behav Biomed Mater. 2022;128:105109. [Crossref] [PubMed]
  • 16. Kitasako Y, Burrow MF, Nikaido T, Tagami J. The influence of storage solution on dentin bond durability of resin cement. Dent Mater. 2000;16(1):1-6. [Crossref] [PubMed]
  • 17. Armstrong SR, Keller JC, Boyer DB. The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dent Mater. 2001;17(3):268-76. [Crossref] [PubMed]
  • 18. Karadaglioglu OI, Alagoz LG, Caliskan A, Vaizoglu GA. The effect of different surface roughening systems on the micro-shear bond strength of aged resin composites. Niger J Clin Pract. 2022;25(1):37-43. [Crossref] [PubMed]
  • 19. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med. 2001;12(2):136-51. [Crossref] [PubMed]
  • 20. Finer Y, Santerre JP. Salivary esterase activity and its association with the biodegradation of dental composites. J Dent Res. 2004;83(1):22-6. [Crossref] [PubMed]
  • 21. Yoshida E, Hashimoto M, Hori M, Kaga M, Sano H, Oguchi H. Deproteinizing effects on resin–tooth bond structures. J Biomed Mater Res B Appl Biomater. 2004;68(1):29-35. [Crossref]
  • 22. Yamauti M, Hashimoto M, Sano H, Ohno H, Carvalho RM, Kaga M, Tagami J, Oguchi H, Kubota M. Degradation of resin-dentin bonds using NaOCl storage. Dent Mater. 2003;19(5):399-405. [Crossref] [PubMed]
  • 23. De Munck J, Ermis RB, Koshiro K, Inoue S, Ikeda T, Sano H, Van Landuyt KL, Van Meerbeek B. NaOCl degradation of a HEMA-free all-in-one adhesive bonded to enamel and dentin following two air-blowing techniques. J Dent. 2007;35(1):74-83. [Crossref] [PubMed]
  • 24. Toledano M, Osorio R, Albaladejo A, Aguilera FS, Osorio E. Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus total-etch adhesives. J Biomed Mater Res A. 2006;77(1):128-35. [Crossref] [PubMed]
  • 25. Monticelli F, Osorio R, Pisani-Proença J, Toledano M. Resistance to degradation of resin-dentin bonds using a one-step HEMA-free adhesive. J Dent. 2007;35(2):181-6. [Crossref] [PubMed]
  • 26. Hebling J, Pashley DH, Tjäderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84(8):741-6. [Crossref] [PubMed]
  • 27. O'Reilly MM, Featherstone JD. Demineralization and remineralization around orthodontic appliances: an in vivo study. Am J Orthod Dentofacial Orthop. 1987;92(1):33-40. [Crossref] [PubMed]
  • 28. Bagheri R, Burrow MF, Tyas M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. J Dent. 2005;33(5):389-98. [Crossref] [PubMed]
  • 29. Lee SY, Greener EH, Covey DA, Menis DL. Effects of food/oral simulating fluids on microstructure and strength of dentine bonding agents. J Oral Rehabil. 1996;23(5):353-61. [Crossref] [PubMed]
  • 30. Ferracane JL, Marker VA. Solvent degradation and reduced fracture toughness in aged composites. J Dent Res. 1992;71(1):13-9. [Crossref] [PubMed]
  • 31. El-Araby AM, Talic YF. The effect of thermocycling on the adhesion of self-etching adhesives on dental enamel and dentin. J Contemp Dent Pract. 2007;8(2):17-24. [PubMed]
  • 32. Abo-Elsoud AAE, Mohamady EM, Abdou NEF. Thermomechanical aging effects on vertical marginal gap and fracture resistance: A comparative study of Bioflx and traditional pediatric crowns. BMC Oral Health. 2024;24(1334). [PubMed]
  • 33. Alsulimani OA, Alhaddad AJ, AlSaggaf AU, Altassan M, Alghamdi M, Abuzinadah SH, Hajjaj MS, Marghalani AA. Comparative in vitro testing of the tensile bond strength under artificial aging between different lithium disilicate ceramics to composite substrate: a novel methodology. Cureus. 2024;16(8). [Crossref] [PubMed] [PMC]
  • 33. Abdalla AI, El Zohairy AA, Aboushelib MM, Feilzer AJ. Influence of thermal and mechanical load cycling on the microtensile bond strength of self-etching adhesives. Am J Dent. 2007;20(4):250-4. [PubMed]
  • 34. Eliasson ST, Dahl JE. Effect of thermal cycling on temperature changes and bond strength in different test specimens. Biomater Investig Dent. 2020;7(1):16-24. [Crossref] [PubMed] [PMC]
  • 35. Biçer Z, Yaman BC, Çeliksöz Ö, Tepe H. Surface roughness of different types of resin composites after artificial aging procedures: an in vitro study. BMC Oral Health. 2024;24:876. [Crossref]
  • 36. Sulimany AM, BinSaleh SS, AlYahya E, Bataweel R, Alhussain I, Almahdy A. Effect of aging on the microhardness of different resin-based fluoride-releasing fissure sealants: an in vitro study. J Contemp Dent Pract. 2021;22(10):1144-1149. [PubMed]
  • 37. Teixeira GS, Pereira GKR, Susin AH. Aging methods—an evaluation of their influence on bond strength. Eur J Dent. 2021;15(3):448-453. [Crossref] [PubMed] [PMC]
  • 38. Yun X, Li W, Ling C, Fok A. Effect of artificial aging on the bond durability of fissure sealants. J Adhes Dent. 2013;15(3):251-8. [Crossref] [PubMed]
  • 39. Alageel O, Alsadon O, Almansour H, Alshehri A, Alhabbad F, Alsarani M. Assessment of effect of accelerated aging on interim fixed dental materials using digital technologies. J Adv Prosthodont. 2022;14(6):360-368. [Crossref] [PubMed] [PMC]
  • 40. Vilde T, Stewart CA, Finer Y. Simulating the intraoral aging of dental bonding agents: a narrative review. Dent J (Basel). 2022;10(1):13. [Crossref] [PubMed] [PMC]
  • 41. Gad MA, Abdelhamid AM, ElSamahy M, Abolgheit S, Hanno KI. Effect of aging on dimensional accuracy and color stability of CAD-CAM milled and 3D-printed denture base resins: a comparative in-vitro study. BMC Oral Health. 2024;24(1):1124. [Crossref] [PubMed] [PMC]
  • 42. Drubi-Filho B, Garcia Lda F, Cruvinel DR, Sousa AB, Pires-de-Souza Fde C. Color stability of modern composites subjected to different periods of accelerated artificial aging. Braz Dent J. 2012;23(5):575-80. [Crossref] [PubMed]
  • 43. Schulze KA, Tinschert J, Marshall SJ, Marshall GW. Spectroscopic analysis of polymer-ceramic dental composites after accelerated aging. Int J Prosthodont. 2003;16(4):355-61. [PubMed]
  • 44. Powers JM, Fan PL, Raptis CN. Color stability of new composite restorative materials under accelerated aging. J Dent Res. 1980;59(12):2071-4. [Crossref] [PubMed]
  • 45. Powers JM, Fan PL, Marcotte M. In vitro accelerated aging of composites and a sealant. J Dent Res. 1981;60(9):1672-7. [Crossref] [PubMed]
  • 46. Lee YK, Lu H, Powers JM. Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dent Mater. 2006;22(7):653-60. [Crossref] [PubMed]
  • 47. Takahashi MK, Vieira S, Rached RN, de Almeida JB, Aguiar M, de Souza EM. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: a comparative study. Oper Dent. 2008;33(2):189-95. [Crossref] [PubMed]
  • 48. de Oliveira DC, Ayres AP, Rocha MG, Giannini M, Puppin Rontani RM, Ferracane JL, Sinhoreti MA. Effect of different in vitro aging methods on color stability of a dental resin-based composite using CIELAB and CIEDE2000 color-difference formulas. J Esthet Restor Dent. 2015;27(5):322-30. [Crossref] [PubMed]
  • 49. Schneider LF, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater. 2008;24(9):1169-77. [Crossref] [PubMed]
  • 50. Alhotan A, Yilmaz B, Weber A, Babaier R, Bourauel C, Fouda AM. Effect of artificial aging on fracture toughness and hardness of 3D-printed and milled 3Y-TZP zirconia. J Prosthodont. 2024. [Crossref] [PubMed]

Evaluation of In-Vitro Aging Procedures in Dentistry: A Traditional Review

Yıl 2025, Cilt: 7 Sayı: 3, 88 - 100, 28.10.2025

Öz

Objective:
The longevity of dental restorative materials is a critical factor for successful clinical outcomes. This study aims to analyze the aging protocols used to evaluate the performance of restorative materials under oral conditions, discuss the strengths and limitations of these methods, and highlight the need for new protocols that provide improved simulation.
Materials and Methods:
Aging protocols have been developed to mimic oral conditions such as temperature fluctuations, pH changes, enzymatic activity, and mechanical forces. Commonly used methods include water storage, sodium hypochlorite (NaOCl) exposure, pH cycling, thermal cycling, and chewing simulation. These techniques focus on assessing specific performance properties, such as hydrolytic degradation, chemical resistance, thermal stability, and mechanical wear.
Results:
Each aging method provides valuable insights into the durability of restorative materials. However, current protocols often fail to fully replicate the complex and multifactorial environment of the oral cavity. This highlights the need for more sophisticated protocols that better simulate clinical conditions.
Conclusion:
Evaluating the advantages and limitations of existing aging methods underscores the necessity for developing more accurate and reliable protocols for clinical simulation. This advancement would enhance the durability and clinical efficacy of restorative materials, promoting long-term success.

Kaynakça

  • 1. Oskoe SK, Drummond JL, Rockne KJ. The effect of esterase enzyme on aging dental composites. J Biomed Mater Res B Appl Biomater. 2019;107(6):2178-84. [Crossref]
  • 2. Garma NMH, Ibrahim AI. Bond strength survival of a novel calcium phosphate-enriched orthodontic self-etching system after various ageing protocols: An in vitro study. Int J Dent. 2022;2022:3960362. [Crossref] [PubMed] [PMC]
  • 3. Kuscu HY. The effect of different ageing protocols on the shear bond strength of the Ceromer indirect composite on two different substructure materials. Niger J Clin Pract. 2024;27(3):368-75. [Crossref] [PubMed]
  • 4. Mudhaffer S, Haider J, Satterthwaite J, Silikas N. Effects of print orientation and artificial aging on the flexural strength and flexural modulus of 3D printed restorative resin materials. J Prosthet Dent. 2024. [Crossref]
  • 5. Giuseppe MD, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB, Dilley RJ, Doyle BJ. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;79:150-7. [Crossref] [PubMed]
  • 6. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco A. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater. 2014;29:295-308. [Crossref] [PubMed]
  • 7. Melo MA, Moysés MR, Santos SG, Alcântara CE, Ribeiro JC. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs. Braz Oral Res. 2011;25(6):485-91. [Crossref] [PubMed]
  • 8. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater. 2007;23(10):1276-82. [Crossref] [PubMed]
  • 9. Narde J, Ahmed N, Keskar V, Pandurangan KK. Evaluation of the colour stability and surface roughness of polymethylmethacrylate and indirect composites with and without ageing: An in-vitro study. Cureus. 2024;16(8). [Crossref] [PubMed] [PMC]
  • 10. Shahin SY, AlQahtani N, Abushowmi TH, Siddiqui IA, Akhtar S, Nassar EA, Gad MM. The effect of surface treatment and thermal aging on the bonding of clear aligner attachments to provisional resin-based material: shear bond strength analysis. Front Oral Health. 2024;5:1449833. [Crossref] [PubMed] [PMC]
  • 11. Topbaş C, Çınar Ş, Altan B, Şirin DA, Fildişi MA. The effects of different root canal irrigation protocols and artificial aging procedures on the bond strength between dentin and hybrid ceramic posts. BMC Oral Health. 2022;22(1):590. [Crossref] [PubMed] [PMC]
  • 12. Tüfekçi BB, Yeşil Z. Examination of the effect of aging process on marginal fit and fracture strength of temporary crowns prepared from different materials. Heliyon. 2024;10(6). [Crossref] [PubMed] [PMC]
  • 13. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, Lambrechts P, Vanherle G. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res. 2003;82(2):136-40. [Crossref] [PubMed]
  • 14. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, Lambrechts P, Vanherle G. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res. 2003;82(2):136-40. [Crossref] [PubMed]
  • 15. Schepke U, Filius D, Lohbauer U, la Bastide-van Gemert S, Gresnigt MMM, Cune MS. Dimensional changes of CAD/CAM polymer crowns after water aging - An in vitro experiment. J Mech Behav Biomed Mater. 2022;128:105109. [Crossref] [PubMed]
  • 16. Kitasako Y, Burrow MF, Nikaido T, Tagami J. The influence of storage solution on dentin bond durability of resin cement. Dent Mater. 2000;16(1):1-6. [Crossref] [PubMed]
  • 17. Armstrong SR, Keller JC, Boyer DB. The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dent Mater. 2001;17(3):268-76. [Crossref] [PubMed]
  • 18. Karadaglioglu OI, Alagoz LG, Caliskan A, Vaizoglu GA. The effect of different surface roughening systems on the micro-shear bond strength of aged resin composites. Niger J Clin Pract. 2022;25(1):37-43. [Crossref] [PubMed]
  • 19. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med. 2001;12(2):136-51. [Crossref] [PubMed]
  • 20. Finer Y, Santerre JP. Salivary esterase activity and its association with the biodegradation of dental composites. J Dent Res. 2004;83(1):22-6. [Crossref] [PubMed]
  • 21. Yoshida E, Hashimoto M, Hori M, Kaga M, Sano H, Oguchi H. Deproteinizing effects on resin–tooth bond structures. J Biomed Mater Res B Appl Biomater. 2004;68(1):29-35. [Crossref]
  • 22. Yamauti M, Hashimoto M, Sano H, Ohno H, Carvalho RM, Kaga M, Tagami J, Oguchi H, Kubota M. Degradation of resin-dentin bonds using NaOCl storage. Dent Mater. 2003;19(5):399-405. [Crossref] [PubMed]
  • 23. De Munck J, Ermis RB, Koshiro K, Inoue S, Ikeda T, Sano H, Van Landuyt KL, Van Meerbeek B. NaOCl degradation of a HEMA-free all-in-one adhesive bonded to enamel and dentin following two air-blowing techniques. J Dent. 2007;35(1):74-83. [Crossref] [PubMed]
  • 24. Toledano M, Osorio R, Albaladejo A, Aguilera FS, Osorio E. Differential effect of in vitro degradation on resin-dentin bonds produced by self-etch versus total-etch adhesives. J Biomed Mater Res A. 2006;77(1):128-35. [Crossref] [PubMed]
  • 25. Monticelli F, Osorio R, Pisani-Proença J, Toledano M. Resistance to degradation of resin-dentin bonds using a one-step HEMA-free adhesive. J Dent. 2007;35(2):181-6. [Crossref] [PubMed]
  • 26. Hebling J, Pashley DH, Tjäderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84(8):741-6. [Crossref] [PubMed]
  • 27. O'Reilly MM, Featherstone JD. Demineralization and remineralization around orthodontic appliances: an in vivo study. Am J Orthod Dentofacial Orthop. 1987;92(1):33-40. [Crossref] [PubMed]
  • 28. Bagheri R, Burrow MF, Tyas M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. J Dent. 2005;33(5):389-98. [Crossref] [PubMed]
  • 29. Lee SY, Greener EH, Covey DA, Menis DL. Effects of food/oral simulating fluids on microstructure and strength of dentine bonding agents. J Oral Rehabil. 1996;23(5):353-61. [Crossref] [PubMed]
  • 30. Ferracane JL, Marker VA. Solvent degradation and reduced fracture toughness in aged composites. J Dent Res. 1992;71(1):13-9. [Crossref] [PubMed]
  • 31. El-Araby AM, Talic YF. The effect of thermocycling on the adhesion of self-etching adhesives on dental enamel and dentin. J Contemp Dent Pract. 2007;8(2):17-24. [PubMed]
  • 32. Abo-Elsoud AAE, Mohamady EM, Abdou NEF. Thermomechanical aging effects on vertical marginal gap and fracture resistance: A comparative study of Bioflx and traditional pediatric crowns. BMC Oral Health. 2024;24(1334). [PubMed]
  • 33. Alsulimani OA, Alhaddad AJ, AlSaggaf AU, Altassan M, Alghamdi M, Abuzinadah SH, Hajjaj MS, Marghalani AA. Comparative in vitro testing of the tensile bond strength under artificial aging between different lithium disilicate ceramics to composite substrate: a novel methodology. Cureus. 2024;16(8). [Crossref] [PubMed] [PMC]
  • 33. Abdalla AI, El Zohairy AA, Aboushelib MM, Feilzer AJ. Influence of thermal and mechanical load cycling on the microtensile bond strength of self-etching adhesives. Am J Dent. 2007;20(4):250-4. [PubMed]
  • 34. Eliasson ST, Dahl JE. Effect of thermal cycling on temperature changes and bond strength in different test specimens. Biomater Investig Dent. 2020;7(1):16-24. [Crossref] [PubMed] [PMC]
  • 35. Biçer Z, Yaman BC, Çeliksöz Ö, Tepe H. Surface roughness of different types of resin composites after artificial aging procedures: an in vitro study. BMC Oral Health. 2024;24:876. [Crossref]
  • 36. Sulimany AM, BinSaleh SS, AlYahya E, Bataweel R, Alhussain I, Almahdy A. Effect of aging on the microhardness of different resin-based fluoride-releasing fissure sealants: an in vitro study. J Contemp Dent Pract. 2021;22(10):1144-1149. [PubMed]
  • 37. Teixeira GS, Pereira GKR, Susin AH. Aging methods—an evaluation of their influence on bond strength. Eur J Dent. 2021;15(3):448-453. [Crossref] [PubMed] [PMC]
  • 38. Yun X, Li W, Ling C, Fok A. Effect of artificial aging on the bond durability of fissure sealants. J Adhes Dent. 2013;15(3):251-8. [Crossref] [PubMed]
  • 39. Alageel O, Alsadon O, Almansour H, Alshehri A, Alhabbad F, Alsarani M. Assessment of effect of accelerated aging on interim fixed dental materials using digital technologies. J Adv Prosthodont. 2022;14(6):360-368. [Crossref] [PubMed] [PMC]
  • 40. Vilde T, Stewart CA, Finer Y. Simulating the intraoral aging of dental bonding agents: a narrative review. Dent J (Basel). 2022;10(1):13. [Crossref] [PubMed] [PMC]
  • 41. Gad MA, Abdelhamid AM, ElSamahy M, Abolgheit S, Hanno KI. Effect of aging on dimensional accuracy and color stability of CAD-CAM milled and 3D-printed denture base resins: a comparative in-vitro study. BMC Oral Health. 2024;24(1):1124. [Crossref] [PubMed] [PMC]
  • 42. Drubi-Filho B, Garcia Lda F, Cruvinel DR, Sousa AB, Pires-de-Souza Fde C. Color stability of modern composites subjected to different periods of accelerated artificial aging. Braz Dent J. 2012;23(5):575-80. [Crossref] [PubMed]
  • 43. Schulze KA, Tinschert J, Marshall SJ, Marshall GW. Spectroscopic analysis of polymer-ceramic dental composites after accelerated aging. Int J Prosthodont. 2003;16(4):355-61. [PubMed]
  • 44. Powers JM, Fan PL, Raptis CN. Color stability of new composite restorative materials under accelerated aging. J Dent Res. 1980;59(12):2071-4. [Crossref] [PubMed]
  • 45. Powers JM, Fan PL, Marcotte M. In vitro accelerated aging of composites and a sealant. J Dent Res. 1981;60(9):1672-7. [Crossref] [PubMed]
  • 46. Lee YK, Lu H, Powers JM. Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dent Mater. 2006;22(7):653-60. [Crossref] [PubMed]
  • 47. Takahashi MK, Vieira S, Rached RN, de Almeida JB, Aguiar M, de Souza EM. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: a comparative study. Oper Dent. 2008;33(2):189-95. [Crossref] [PubMed]
  • 48. de Oliveira DC, Ayres AP, Rocha MG, Giannini M, Puppin Rontani RM, Ferracane JL, Sinhoreti MA. Effect of different in vitro aging methods on color stability of a dental resin-based composite using CIELAB and CIEDE2000 color-difference formulas. J Esthet Restor Dent. 2015;27(5):322-30. [Crossref] [PubMed]
  • 49. Schneider LF, Pfeifer CS, Consani S, Prahl SA, Ferracane JL. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater. 2008;24(9):1169-77. [Crossref] [PubMed]
  • 50. Alhotan A, Yilmaz B, Weber A, Babaier R, Bourauel C, Fouda AM. Effect of artificial aging on fracture toughness and hardness of 3D-printed and milled 3Y-TZP zirconia. J Prosthodont. 2024. [Crossref] [PubMed]
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çocuk Diş Hekimliği
Bölüm Pediatric Dentistry
Yazarlar

Hülya Çerçi Akçay 0000-0002-3589-7511

Yayımlanma Tarihi 28 Ekim 2025
Gönderilme Tarihi 10 Mart 2025
Kabul Tarihi 14 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

Vancouver Çerçi Akçay H. Evaluation of In-Vitro Aging Procedures in Dentistry: A Traditional Review. Dent & Med J - R. 2025;7(3):88-100.




"Dünyada herşey için, medeniyet için, hayat için, başarı için en gerçek yol gösterici ilimdir, fendir. İlim ve fennin dışında yol gösterici aramak gaflettir, cahilliktir, doğru yoldan sapmaktır. Yalnız ilmin ve fenin yaşadığımız her dakikadaki safhalarının gelişimini anlamak ve ilerlemeleri zamanında takip etmek şarttır. Bin, iki bin, binlerce yıl önceki ilim ve fen lisanının koyduğu kuralları, şu kadar bin yıl sonra bugün aynen uygulamaya kalkışmak elbette ilim ve fennin içinde bulunmak değildir."

M. Kemal ATATÜRK