Araştırma Makalesi
BibTex RIS Kaynak Göster

Generalized Quaternions Serret-Frenet and Bishop Frames

Yıl 2012, Sayı: 029, 29 - 38, 12.12.2012

Öz

Serret-Frenet and
Parallel-Transport frame are produced with the help of the generalized
quaternions again by the method in [4].

Kaynakça

  • [1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J. Math. 21(1) 141-152, 1998.
  • [2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.
  • [3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J. Geom. Phys. 56 322-336, 2006
  • [4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.
  • [5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.
  • [6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.
  • [7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.
  • [8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961
  • [9] Öztürk, U., Hacısalihoğlu, H. H., Yaylı, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010
  • [10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246-251, March 1975.

GENELLEŞTİRİLMİŞ KUATERNİYONLARIN SERRET-FRENET VE BISHOP ÇATILARI

Yıl 2012, Sayı: 029, 29 - 38, 12.12.2012

Öz

Serret-Frenet
ve Paralel taşıma çatıları, genelleştirilmiş kuaterniyonlar yardımıyla yine
[4]te verilen metot ile oluşturulmuştur.

Kaynakça

  • [1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J. Math. 21(1) 141-152, 1998.
  • [2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.
  • [3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J. Geom. Phys. 56 322-336, 2006
  • [4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.
  • [5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.
  • [6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.
  • [7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.
  • [8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961
  • [9] Öztürk, U., Hacısalihoğlu, H. H., Yaylı, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010
  • [10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246-251, March 1975.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erhan Ata

Yasemin Kemer Bu kişi benim

Ali Atasoy Bu kişi benim

Yayımlanma Tarihi 12 Aralık 2012
Yayımlandığı Sayı Yıl 2012 Sayı: 029

Kaynak Göster

APA Ata, E., Kemer, Y., & Atasoy, A. (2012). Generalized Quaternions Serret-Frenet and Bishop Frames. Journal of Science and Technology of Dumlupınar University(029), 29-38.