Araştırma Makalesi
BibTex RIS Kaynak Göster

ANTİMON KATKILI TiO2/n-Si METAL-YALITKAN-YARIİLETKEN DİYODUN ELEKTRİKSEL PARAMETRELERİNİN FARKLI YÖNTEMLERLE BELİRLENMESİ

Yıl 2011, Sayı: 026, 25 - 38, 15.12.2011

Öz

Metal-yalıtkan-yarıiletken (MIS) diyotların, I-V karakteristikleri yardımıyla elde
edilen parametreleri elektronik tasarımlarda önemli yer tutmaktadır. Çığ gibi
büyüyen elektronik sanayisinde, değişik yöntemlerle malzeme parametrelerinin
her geçen gün iyileştirilmesi ve çeşitliliğinin artması, malzemelerin
karakterizasyonlarından yapılan parametre hesaplamalarında yeni metotlar
bulunmasının yolunu açmıştır. Bu çalışmada, antimon katkılı TiO2/n-Si
MIS diyot oluşturulmuş ve yapının idealite faktörü (n), engel yüksekliği ()ve seri direnç değeri (Rs)
gibi temel elektriksel parametreleri
ileri beslem I-V, Cheung fonksiyonları,
Norde metodu, Bohlin metodu, Hernandez metodu ve Chattopadhyay metodu gibi
farklı metotlarla hesaplanmıştır. Tüm yöntemlerden
elde edilen engel yüksekliği değerlerinde iyi bir uyum gözlenirken, idealite
faktörü ve seri direnç değerlerinin sırasıyla 
2.74-3.42 ile 94 - 4118
arasında
değiştiği gözlenmiştir.

Kaynakça

  • [1] F. Braun, “On the current conduction through metal sulphides (in German)”, Ann. Rev. Phys. Chem., 153, 556 (1874).
  • [2] W. Schottky, “Zur halbleitertheorie der sperrschichtund spitzengleichrichter”, Springer Berlin/Heidelberg, Berlin, (1938).
  • [3] H. A. Bethe, “Theory of the boundary layer of crystal rectifiers”, MIT Radiat. Lab. Rep., 43, 12 (1942).
  • [4] A. H. Wilson, "A note on the theory of rectification", Proceeding of the Royal. Society A, 136, 487 (1932).
  • [5] V. L. Rideout, “Metal-semiconductor rectifiers”, Thin Solid Films, 48, 261 (1978).
  • [6] A.M. Cowley, and S.M. Sze, “Surface states and barrier height of metal-semiconductor systems”, J. Appl. Phys., 36, 3212 (1965).
  • [7] M. Dragoman, A. Cismaru, H. Hartnagel, and R. Plana, “Reversible metal-semiconductor transitions for microwave switching applications”, Appl. Phys. Lett., 88, 073503 (2006).
  • [8] B. C. Yadav, R. Srivastava, and C. D. Dwivedi, “Synthesis and characterization of ZnO-TiO2 nanocomposite and its application as a humidity sensor”, Phil. Mag., 88, 1113 (2008).
  • [9] Q. Wang, “High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells”, Phil. Mag., 89, 2587 (2009).
  • [10] K. T. Sung, W. Q. Li, S. H. Li, S. W. Pang, and P. K. Bhattacharya, “Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET”, Electron. Lett., 29, 277 (1993).
  • [11] S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, and M. Can, “Electrical characteristics of an organic thin copolymer/p-Si Schottky barrier diode ”, Thin Solid Films, 518, 4375 (2010).
  • [12] S. Sönmezoğlu, Ö. A. Sönmezoğlu, G. Çankaya, A. Yıldırım, and N. Serin, “Electrical characteristics of DNA based metal-insulator-semiconductor structures”, J. Appl. Phys., 107, 124518 (2010).
  • [13] S. Sönmezoğlu, C. B. Durmuş, R. Taş, G. Çankaya, and M. Can, “Fabrication and electrical characterization of pyrrole–aniline copolymer-based Schottky diodes”, Semicond. Sci. Technol., 26, 055011 (2011).
  • [14] S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, and M. Can, “Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode”, Solid State Sci., 12, 706 (2010).
  • [15] P. Cova, and A. Singh, “Temperature-dependence of I-V and C-V characteristics of Ni/N-CdF2 Schottky-barrier type diodes”, Solid State Electron., 33, 11 (1990).
  • [16] B. Akkal, Z. Benamara, L. Bideux, and B. Gruzza, “Electrical characterization of the Au/InP(100) and Au/InSb/InP(100) structures”, Microelectron. J., 30, 673 (1999).
  • [17] G. Y. Robinson, “Physics and Chemistry of III-V Compound Semiconductor Interfaces”, C. W. Wilmsen, Plenium Pres., New York (1985).
  • [18] E. H. Rhoderick, and R. H. Williams, “Metal-Semiconductor Contacts, 2nd ed.”, Clerendon, Oxford, (1988).
  • [19] M. Sağlam, and A. Türüt, “Effect of thermal annealing in nitrogen on the I - V and C - V characteristics of Cr - Ni - Co alloy/LEC n-GaAs Schottky diodes”, Semicond. Sci. Tech., 12, 1028 (1997).
  • [20] A. Türüt, S. Tüzemen, M. Yıldırım, B. Abay, and M. Sağlam, “Barrier height enhancement by annealing Cr-Ni-Co alloy Schottky contacts on LEC GaAs”, Solid State Electron., 35, 1423 (1992).
  • [21] L. J. Brillson, “Contacts to Semiconductors”, Noyes publications, New Jersey, (1993).
  • [22] K. Yu, S. Cheung, T. Sands, J. Jaklevic, N. Cheung, and E. Haller, “Schottky barrier degradation of the W/GaAs system after high‐temperature annealing”, J. Appl. Phys., 60, 3235 (1986).
  • [23] H. C. Cheng, C. Y. Wu, and J. J. Shy, “Excellent thermal stability of cobalt-aluminum alloy Schottky contacts on GaAs substrates”, Solid State Electron., 33, 863 (1990).
  • [24] A. Tataroğlu, and Ş. Altındal, “Characterization of current-voltage (I-V) and capacitance-voltage-frequency (CVf) features of Al/SiO2/p-Si (MIS) Schottky diodes”, Microelectron. Eng., 83, 582 (2006).
  • [25] M. Perego, G. Seguini, G. Scarel, M. Fanciulli, and F.Wallrapp, “Energy band alignment at TiO2/Si interface with various interlayers”, J. Appl. Phys., 103, 043509 (2008).
  • [26] M. Özer, D. E. Yıldız, Ş. Altındal, and M. M. Bülbül, “Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes”, Solid State Electron., 51, 941 (2007).
  • [27] M. M. Bülbül, S. Zeyrek, Ş. Altındal, and H. Yüzer, “On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes”, Microelectron. Eng., 83, 577 (2006).
  • [28] S. Chakraborty, M. K. Bera, P. K. Bose, and C. K. Maiti, “Analysis of interface states of Al/TiO2/Si0.3Ge0.7 MIS structures using conductance technique”, Semicond. Sci. Tech., 21, 335 (2006).
  • [29] O. Pakma, N. Serin, T. Serin, and Ş. Altındal, “The influence series resistance and interface states on intersecting behaviour of I-V characteristics of Al/TiO2/p-Si (MIS) structures at low temperatures”, Semicond. Sci. Tech., 23, 105014 (2008).
  • [30] O. Pakma, N. Serin, T. Serin, and Ş. Altındal, “The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures”, J. Appl. Phys., 104, 014501 (2008).
  • [31] C. T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas, “Permittivity properties of thermally treated TiO2”, Mater. Lett., 58, 1502 (2004).
  • [32] C. S. Rao, T.Srikumar, Y.Gandhi, V. Ravikumar, and N. Veeraiah, “Dielectric and spectroscopic investigations of lithium aluminium zirconium silicate glasses mixed with TiO2”, Phi. Mag., 91, 958 (2011).
  • [33] M. M. Frank, S. Kim, S. L. Brown, J. Bruley, M. Copel, M. Hopstaken, M. Chudzik, and V. Narayanan, “Scaling the MOSFET gate dielectric: From high-k to higher-k”, Microelectron. Eng., 86, 1603 (2009).
  • [34] U. Diebold, ” The surface science of titanium dioxide”, Surf. Sci. Rep., 48, 53 (2003).
  • [35] L. H. Xu, L. X. Shi, and X. Y. Li, “Effect of TiO2 buffer layer on the structural and optical properties of ZnO thin films deposited by E-beam evaporation and sol–gel method”, Appl. Surf. Sci., 255, 3230 (2008).
  • [36] S. Sönmezoğlu, G. Çankaya, and N. Serin, “Optical properties of nano-structured TiO2 thin films deposited by sol-gel dip coating method”, Int. J. Nat. and Eng. Sci., 5, 51 (2011).
  • [37] I. N. Kholmanov, E. Barborini, S. Vinati, P. Piseri, A. Podesta, C. Ducati, C. Lenardi, and P. Milani, “The influence of the precursor clusters on the structural and morphological evolution of nanostructured TiO2 under thermal annealing”, Nanotechnology, 14, 1168 (2003).
  • [38] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys., 50, 5052 (1979).
  • [39] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor”, J. Appl. Phys., 60, 1223 (1986).
  • [40] S. K. Cheung, and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Lett., 49, 85 (1986).
  • [41] P. Chattopadhyay, “A new technique for the determination of barrier height of Schottky barrier diodes”, Solid State Electron., 38, 739 (1995).
  • [42] M. P. Hernandez, C. F. Alonso, and J. L. Pena, “Barrier height determination in homogeneous nonideal Schottky contacts”, J. Phys. D: Appl. Phys., 34, 1157 (2001).
  • [43] W. Kern, “Handbook of Semiconductor Cleaning Procedure”, Noyes, New York, (1993).
  • [44] S. M. Sze, “Physics of Semiconductor Devices”, Wiley, NewYork, (1981).
  • [45] K. K. Kwok, “Complete Guide to Semiconductor Devices”, McGraw-Hill, New York, (1995).
  • [46] K. Sato, and Y. Yasamura, “Study of forward I-V plot for Schottky diodes with series resistance”, J. Appl. Phys., 58, 3655 (1985).
  • [47] C. R. Crowell, “The Richardson constant for thermionic emission in Schottky barrier diodes”, Solid State Electron., 8, 395 (1965).
  • [48] L. Stolt, K. Bohlin, P. A. Tove, and H. Norde, “Schottky rectifiers on silicon using high barriers”, Solid State Electron., 26, 295 (1982).
  • [49] R. M. Cibils, and R.H. Buitrago, “Forward I-V plot for nonideal Schottky diodes with high series resistance”, J. Appl. Phys., 58, 1075 (1985).
  • [50] J. H. Werner, “Schottky barrier and pn-junction I/V plots – small signal evaluation”, Appl. Phys. A, 47, 291 (1988).
  • [51] T. Kılıçoğlu, M. E. Aydın, and Y. S. Ocak, “The determination of the interface state density distribution of theAl/methyl red/p-Si Schottky barrier diode by using a capacitance method”, Physica B, 388, 244 (2007).

THE DETERMINATION OF ELECTRICAL PARAMETERS OF METAL-INSULATOR-SEMICONDUCTOR DIODES BASED ON ANTIMONY-DOPED TiO2/n-Si BY DIFFERENT METHODS

Yıl 2011, Sayı: 026, 25 - 38, 15.12.2011

Öz

Metal-insulator-semiconductor
(MIS) diodes-parameters which are obtained by characteristics are very important in electronic design.
In rapidly developing electronic industry, the improvements of material
parameters by using various methods, hence the increasing of diversity provides
to find new methods in parameter solutions, which is calculated from material
characterizations. In this study, antimony doped TiO2/n-Si MIS diode
was fabricated and basic electrical parameters of the device such as ideality factor (n), barrier height (), and series resistance (Rs)  were determined from the forward
bias I-V characteristics, Cheung
functions, Norde’s method, Bohlin’s
method, Hernandez’s method and
Chattopadhyay’s method. While there was a good
agreement for the values of barrier height obtained from all methods, the
ideality factor and series resistance values vary between 2.74 - 3.42 and 94 -
4118, respectively .

Kaynakça

  • [1] F. Braun, “On the current conduction through metal sulphides (in German)”, Ann. Rev. Phys. Chem., 153, 556 (1874).
  • [2] W. Schottky, “Zur halbleitertheorie der sperrschichtund spitzengleichrichter”, Springer Berlin/Heidelberg, Berlin, (1938).
  • [3] H. A. Bethe, “Theory of the boundary layer of crystal rectifiers”, MIT Radiat. Lab. Rep., 43, 12 (1942).
  • [4] A. H. Wilson, "A note on the theory of rectification", Proceeding of the Royal. Society A, 136, 487 (1932).
  • [5] V. L. Rideout, “Metal-semiconductor rectifiers”, Thin Solid Films, 48, 261 (1978).
  • [6] A.M. Cowley, and S.M. Sze, “Surface states and barrier height of metal-semiconductor systems”, J. Appl. Phys., 36, 3212 (1965).
  • [7] M. Dragoman, A. Cismaru, H. Hartnagel, and R. Plana, “Reversible metal-semiconductor transitions for microwave switching applications”, Appl. Phys. Lett., 88, 073503 (2006).
  • [8] B. C. Yadav, R. Srivastava, and C. D. Dwivedi, “Synthesis and characterization of ZnO-TiO2 nanocomposite and its application as a humidity sensor”, Phil. Mag., 88, 1113 (2008).
  • [9] Q. Wang, “High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells”, Phil. Mag., 89, 2587 (2009).
  • [10] K. T. Sung, W. Q. Li, S. H. Li, S. W. Pang, and P. K. Bhattacharya, “Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET”, Electron. Lett., 29, 277 (1993).
  • [11] S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, and M. Can, “Electrical characteristics of an organic thin copolymer/p-Si Schottky barrier diode ”, Thin Solid Films, 518, 4375 (2010).
  • [12] S. Sönmezoğlu, Ö. A. Sönmezoğlu, G. Çankaya, A. Yıldırım, and N. Serin, “Electrical characteristics of DNA based metal-insulator-semiconductor structures”, J. Appl. Phys., 107, 124518 (2010).
  • [13] S. Sönmezoğlu, C. B. Durmuş, R. Taş, G. Çankaya, and M. Can, “Fabrication and electrical characterization of pyrrole–aniline copolymer-based Schottky diodes”, Semicond. Sci. Technol., 26, 055011 (2011).
  • [14] S. Sönmezoğlu, S. Şenkul, R. Taş, G. Çankaya, and M. Can, “Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode”, Solid State Sci., 12, 706 (2010).
  • [15] P. Cova, and A. Singh, “Temperature-dependence of I-V and C-V characteristics of Ni/N-CdF2 Schottky-barrier type diodes”, Solid State Electron., 33, 11 (1990).
  • [16] B. Akkal, Z. Benamara, L. Bideux, and B. Gruzza, “Electrical characterization of the Au/InP(100) and Au/InSb/InP(100) structures”, Microelectron. J., 30, 673 (1999).
  • [17] G. Y. Robinson, “Physics and Chemistry of III-V Compound Semiconductor Interfaces”, C. W. Wilmsen, Plenium Pres., New York (1985).
  • [18] E. H. Rhoderick, and R. H. Williams, “Metal-Semiconductor Contacts, 2nd ed.”, Clerendon, Oxford, (1988).
  • [19] M. Sağlam, and A. Türüt, “Effect of thermal annealing in nitrogen on the I - V and C - V characteristics of Cr - Ni - Co alloy/LEC n-GaAs Schottky diodes”, Semicond. Sci. Tech., 12, 1028 (1997).
  • [20] A. Türüt, S. Tüzemen, M. Yıldırım, B. Abay, and M. Sağlam, “Barrier height enhancement by annealing Cr-Ni-Co alloy Schottky contacts on LEC GaAs”, Solid State Electron., 35, 1423 (1992).
  • [21] L. J. Brillson, “Contacts to Semiconductors”, Noyes publications, New Jersey, (1993).
  • [22] K. Yu, S. Cheung, T. Sands, J. Jaklevic, N. Cheung, and E. Haller, “Schottky barrier degradation of the W/GaAs system after high‐temperature annealing”, J. Appl. Phys., 60, 3235 (1986).
  • [23] H. C. Cheng, C. Y. Wu, and J. J. Shy, “Excellent thermal stability of cobalt-aluminum alloy Schottky contacts on GaAs substrates”, Solid State Electron., 33, 863 (1990).
  • [24] A. Tataroğlu, and Ş. Altındal, “Characterization of current-voltage (I-V) and capacitance-voltage-frequency (CVf) features of Al/SiO2/p-Si (MIS) Schottky diodes”, Microelectron. Eng., 83, 582 (2006).
  • [25] M. Perego, G. Seguini, G. Scarel, M. Fanciulli, and F.Wallrapp, “Energy band alignment at TiO2/Si interface with various interlayers”, J. Appl. Phys., 103, 043509 (2008).
  • [26] M. Özer, D. E. Yıldız, Ş. Altındal, and M. M. Bülbül, “Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes”, Solid State Electron., 51, 941 (2007).
  • [27] M. M. Bülbül, S. Zeyrek, Ş. Altındal, and H. Yüzer, “On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes”, Microelectron. Eng., 83, 577 (2006).
  • [28] S. Chakraborty, M. K. Bera, P. K. Bose, and C. K. Maiti, “Analysis of interface states of Al/TiO2/Si0.3Ge0.7 MIS structures using conductance technique”, Semicond. Sci. Tech., 21, 335 (2006).
  • [29] O. Pakma, N. Serin, T. Serin, and Ş. Altındal, “The influence series resistance and interface states on intersecting behaviour of I-V characteristics of Al/TiO2/p-Si (MIS) structures at low temperatures”, Semicond. Sci. Tech., 23, 105014 (2008).
  • [30] O. Pakma, N. Serin, T. Serin, and Ş. Altındal, “The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures”, J. Appl. Phys., 104, 014501 (2008).
  • [31] C. T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas, “Permittivity properties of thermally treated TiO2”, Mater. Lett., 58, 1502 (2004).
  • [32] C. S. Rao, T.Srikumar, Y.Gandhi, V. Ravikumar, and N. Veeraiah, “Dielectric and spectroscopic investigations of lithium aluminium zirconium silicate glasses mixed with TiO2”, Phi. Mag., 91, 958 (2011).
  • [33] M. M. Frank, S. Kim, S. L. Brown, J. Bruley, M. Copel, M. Hopstaken, M. Chudzik, and V. Narayanan, “Scaling the MOSFET gate dielectric: From high-k to higher-k”, Microelectron. Eng., 86, 1603 (2009).
  • [34] U. Diebold, ” The surface science of titanium dioxide”, Surf. Sci. Rep., 48, 53 (2003).
  • [35] L. H. Xu, L. X. Shi, and X. Y. Li, “Effect of TiO2 buffer layer on the structural and optical properties of ZnO thin films deposited by E-beam evaporation and sol–gel method”, Appl. Surf. Sci., 255, 3230 (2008).
  • [36] S. Sönmezoğlu, G. Çankaya, and N. Serin, “Optical properties of nano-structured TiO2 thin films deposited by sol-gel dip coating method”, Int. J. Nat. and Eng. Sci., 5, 51 (2011).
  • [37] I. N. Kholmanov, E. Barborini, S. Vinati, P. Piseri, A. Podesta, C. Ducati, C. Lenardi, and P. Milani, “The influence of the precursor clusters on the structural and morphological evolution of nanostructured TiO2 under thermal annealing”, Nanotechnology, 14, 1168 (2003).
  • [38] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys., 50, 5052 (1979).
  • [39] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor”, J. Appl. Phys., 60, 1223 (1986).
  • [40] S. K. Cheung, and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Lett., 49, 85 (1986).
  • [41] P. Chattopadhyay, “A new technique for the determination of barrier height of Schottky barrier diodes”, Solid State Electron., 38, 739 (1995).
  • [42] M. P. Hernandez, C. F. Alonso, and J. L. Pena, “Barrier height determination in homogeneous nonideal Schottky contacts”, J. Phys. D: Appl. Phys., 34, 1157 (2001).
  • [43] W. Kern, “Handbook of Semiconductor Cleaning Procedure”, Noyes, New York, (1993).
  • [44] S. M. Sze, “Physics of Semiconductor Devices”, Wiley, NewYork, (1981).
  • [45] K. K. Kwok, “Complete Guide to Semiconductor Devices”, McGraw-Hill, New York, (1995).
  • [46] K. Sato, and Y. Yasamura, “Study of forward I-V plot for Schottky diodes with series resistance”, J. Appl. Phys., 58, 3655 (1985).
  • [47] C. R. Crowell, “The Richardson constant for thermionic emission in Schottky barrier diodes”, Solid State Electron., 8, 395 (1965).
  • [48] L. Stolt, K. Bohlin, P. A. Tove, and H. Norde, “Schottky rectifiers on silicon using high barriers”, Solid State Electron., 26, 295 (1982).
  • [49] R. M. Cibils, and R.H. Buitrago, “Forward I-V plot for nonideal Schottky diodes with high series resistance”, J. Appl. Phys., 58, 1075 (1985).
  • [50] J. H. Werner, “Schottky barrier and pn-junction I/V plots – small signal evaluation”, Appl. Phys. A, 47, 291 (1988).
  • [51] T. Kılıçoğlu, M. E. Aydın, and Y. S. Ocak, “The determination of the interface state density distribution of theAl/methyl red/p-Si Schottky barrier diode by using a capacitance method”, Physica B, 388, 244 (2007).
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Savaş Sönmezoğlu

Seçkin Akın

Yayımlanma Tarihi 15 Aralık 2011
Yayımlandığı Sayı Yıl 2011 Sayı: 026

Kaynak Göster

APA Sönmezoğlu, S., & Akın, S. (2011). ANTİMON KATKILI TiO2/n-Si METAL-YALITKAN-YARIİLETKEN DİYODUN ELEKTRİKSEL PARAMETRELERİNİN FARKLI YÖNTEMLERLE BELİRLENMESİ. Journal of Science and Technology of Dumlupınar University(026), 25-38.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.