Araştırma Makalesi
BibTex RIS Kaynak Göster

TABAKALI KOMPOZİT PLAKLARIN DÜŞÜK HIZLI DARBE ETKİSİNİN DENEYSEL ÇALIŞMASI

Yıl 2010, Sayı: 021, 77 - 90, 15.04.2010

Öz

Bu
çalışma düşük hızlı darbe yükü etkisi altında E-cam elyaf/epoxy tabakalı
plakların tepkisinin incelenmesi ile ilgilidir. Darbe testleri, özel olarak
tasarlanmış düşey ağırlık düşürme test cihazı kullanılarak yapılmıştır. Bu
çalışmada 8 kat simetrik olarak tabakalanmış kompozitler kullanılmıştır. Bu
kompozitler, [0/90]2s, [-30/30]2s,
[-45/45]2s olarak üç faklı şekilde istiflenmiştir ve
sonuçları birbirleri ile karşılaştırılmıştır. Hasar oluşumları numunede
batmadan başlayarak tam delinme durumuna kadar kademeli olarak incelenmiştir.
Çalışmalar 140mmx140mm’lik kare plakların iki ve dört taraflı ankastre bağlantı
durumlarında yapılmıştır. Darbe yükleri plak ortalarına uygulanmıştır.

Kaynakça

  • [1] Komorowski J.P., D. Lefebvre, C. Roy, and C. Randon, “Stacking Sequence Effects and Delamination Growth in Graphite/Epoxy Laminates Under Compression-Dominated Fatigue Loading,” Composite Materials Fatigue and Fracture, Fifth Volume, ASTM STP1230, R.H. Martin, ed., American Society for Testing and Materials, Philadelphia, PA, pp. 249-267, (1995).
  • [2] Ratwani, M.M. and H. P. Kan, “Effect of Stacking Sequence on Damage Propagation and Failure Modes in Composite Laminate,” Damage in Composite Materials, ASTM STP 775, K.L. Reifsnider, ed., ASTM, pp. 211-228, (1982).
  • [3] Stinchcomb, W.W., K.L. Reifsnider, P. Yeung, and J. Masters, “Effect of Ply Constraint on Fatigue Damage Development in Composite Material Laminates,” Fatigue of Fibrous Composite Materials, ASTM STP 723, pp. 64-84, (1981).
  • [4] Robinson P, Davies GAO. Impactor mass and specimen geometry effects in low velocity impact on laminated composites. Int J Impact Eng;12(2):189–207 (1992).
  • [5] Liu D, Raju BB, Dang X. Size effects on impact response of composite laminates. Int J Impact Eng;21(10):837–54 (1998).
  • [6] Cantwell WJ. Geometrical effects in the low velocity impact response of GFRP. Compos Sci Technol; 67(9):1900–8 (2007).
  • [7] Abrate, S., Impact on Laminated Composite Materials, Applied Mechanics Review, Vol. 44, No.4, pp. 155-190, (1991).
  • [8] Abrate, S., Impact on Laminated Composites: Recent Advences, Applied Mechanics Review, Vol. 47, No 11, pp. 517-554, (1994).
  • [9] Abrate, S., Modeling of Impacts on Composite Structures, Composite Structures, Vol. 51, pp. 129-138, (2001).
  • [10] Thanomslip C, Hogg PJ., Penetration Impact Resistance of Hybrid Composites Based on Commingled Yarn Fabrics, Comp. Sci. Thecnol. Vol. 63, pp 467-82, (2003).
  • [11] Sadasivam B., Mallick PK., Impact Damage Resistance of Random Fiber Reinforced Automotive Composites, J. Theroplast. Compos. Mater., Vol. 15, pp 181-91, (2002).
  • [12] Naik NK., Ramasimha R., Arya H., Prabhu SV., ShamaRAo N., Impact Response and Damage Tolerance Characteristics of Glass-Carbon/Epoxy Hybrid Composite Plates, Composite Part B, 32:565-74, (2001).
  • [13] Aslan Z., Karakuzu R., Sayman O., Dynamic Characteristics of Laminated Woven E-glass/Epoxy composite plates subjected to low velocity heavy mass impact, J. Compos Mater 36(21): 241-42, (2002).
  • [14] Aslan Z., Karakuzu R., Okutan B., The Response of Laminated Composite Plates Under Low Velocity Impact Loading. Compos Struct, 59:119-27, (2003).

AN EXPERIMENTAL STUDY OF LOW VELOCITY IMPACT RESPONSE FOR COMPOSITE LAMINATED PLATES

Yıl 2010, Sayı: 021, 77 - 90, 15.04.2010

Öz

This paper deals with the response of E-glass/epoxy
laminated plates subjected to low velocity impact loading. Impact tests were
performed using a specially designed vertical drop-weight testing machine. The
samples used for this study were 8 plies symmetric laminated composites. These
composites were characterized by three different stacking sequences, [0/90]2s,
[-30/30]2s, [-45/45]2s, and they were compared
with each other. Specimens were impacted at constant weight and different
impact energies. Damage processes examined step by step from initiation of
damage to final perforation. The studies were carried out on plate dimension of
140mm x140mm with both four and two opposite sides clamped. Impact loads were
applied at the center of each plate. 



Effect of different clamped cases,
stacking sequences and impact energies were investigated on the composite
structures.

Kaynakça

  • [1] Komorowski J.P., D. Lefebvre, C. Roy, and C. Randon, “Stacking Sequence Effects and Delamination Growth in Graphite/Epoxy Laminates Under Compression-Dominated Fatigue Loading,” Composite Materials Fatigue and Fracture, Fifth Volume, ASTM STP1230, R.H. Martin, ed., American Society for Testing and Materials, Philadelphia, PA, pp. 249-267, (1995).
  • [2] Ratwani, M.M. and H. P. Kan, “Effect of Stacking Sequence on Damage Propagation and Failure Modes in Composite Laminate,” Damage in Composite Materials, ASTM STP 775, K.L. Reifsnider, ed., ASTM, pp. 211-228, (1982).
  • [3] Stinchcomb, W.W., K.L. Reifsnider, P. Yeung, and J. Masters, “Effect of Ply Constraint on Fatigue Damage Development in Composite Material Laminates,” Fatigue of Fibrous Composite Materials, ASTM STP 723, pp. 64-84, (1981).
  • [4] Robinson P, Davies GAO. Impactor mass and specimen geometry effects in low velocity impact on laminated composites. Int J Impact Eng;12(2):189–207 (1992).
  • [5] Liu D, Raju BB, Dang X. Size effects on impact response of composite laminates. Int J Impact Eng;21(10):837–54 (1998).
  • [6] Cantwell WJ. Geometrical effects in the low velocity impact response of GFRP. Compos Sci Technol; 67(9):1900–8 (2007).
  • [7] Abrate, S., Impact on Laminated Composite Materials, Applied Mechanics Review, Vol. 44, No.4, pp. 155-190, (1991).
  • [8] Abrate, S., Impact on Laminated Composites: Recent Advences, Applied Mechanics Review, Vol. 47, No 11, pp. 517-554, (1994).
  • [9] Abrate, S., Modeling of Impacts on Composite Structures, Composite Structures, Vol. 51, pp. 129-138, (2001).
  • [10] Thanomslip C, Hogg PJ., Penetration Impact Resistance of Hybrid Composites Based on Commingled Yarn Fabrics, Comp. Sci. Thecnol. Vol. 63, pp 467-82, (2003).
  • [11] Sadasivam B., Mallick PK., Impact Damage Resistance of Random Fiber Reinforced Automotive Composites, J. Theroplast. Compos. Mater., Vol. 15, pp 181-91, (2002).
  • [12] Naik NK., Ramasimha R., Arya H., Prabhu SV., ShamaRAo N., Impact Response and Damage Tolerance Characteristics of Glass-Carbon/Epoxy Hybrid Composite Plates, Composite Part B, 32:565-74, (2001).
  • [13] Aslan Z., Karakuzu R., Sayman O., Dynamic Characteristics of Laminated Woven E-glass/Epoxy composite plates subjected to low velocity heavy mass impact, J. Compos Mater 36(21): 241-42, (2002).
  • [14] Aslan Z., Karakuzu R., Okutan B., The Response of Laminated Composite Plates Under Low Velocity Impact Loading. Compos Struct, 59:119-27, (2003).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ceyla Akın

Mehmet Şenel Bu kişi benim

Yayımlanma Tarihi 15 Nisan 2010
Yayımlandığı Sayı Yıl 2010 Sayı: 021

Kaynak Göster

APA Akın, C., & Şenel, M. (2010). AN EXPERIMENTAL STUDY OF LOW VELOCITY IMPACT RESPONSE FOR COMPOSITE LAMINATED PLATES. Journal of Science and Technology of Dumlupınar University(021), 77-90.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.