Araştırma Makalesi
BibTex RIS Kaynak Göster

ERKEN EVRENDE ŞİŞMELİ ÇAĞ VE FRIEDMANN ÇAĞI İÇİN TEKİL OLMAYAN DE SITTER TİPİ GENELLEŞTİRİLMİŞ BİR KOZMOLOJİK ÇÖZÜM

Yıl 2008, Sayı: 016, 13 - 16, 15.09.2008

Öz

Erken evrende şişmeli çağ ve Friedmann çağı için on boyutlu etkin mükemmel akışkan kaynaklı etkin Einstein alan denklemlerine de Sitter tipi tekil olmayan genelleştirilmiş bir kozmolojik çözüm bulunur. Bu çözümün geçerlilik ölçütleri şişmeli çağda sıfır enerji şartını (NEC) sağlamaz. Bu çözüm, evrenin şişmeli çağdan günümüzdeki Friedmann fazına faz geçişini açıklayan bir kuantum düzeltme fonksiyonunu içerir. Gerçek evren uzayı ve iç uzay Ricci düz uzaylardır.

Kaynakça

  • [1] Hawking, S.W., "The Quantum Theory of the Universe", in Intersection between Elementary Particle Physics and Cosmology edited by T. Piran and S. Weinberg, Jerusalem 28 Dec 1983 - 6 Jan 1984 World Publishing, 75 (1986)
  • [2] Blau, S.K. and Guth, A.H., "Inflationary cosmology", in Three Hundred Years of Gravitation edited by S. W. Hawking and W.Israel, Cambridge University Press, 540 (1987)
  • [3] Appelquist, T., Freund, P.G.O., Chodos, A., "Modern Kaluza-Klein Theories", Addison Wesley, (1987)
  • [4] Linde, A.D., "Inflation and Quantum Cosmology", Academic Pres, (1990)
  • [5] Dereli, T. and Tucker, R.W., “Dynamical Reduction of Internal Dimensions”, Phys.Lett. 125B: 133-135 (1983)
  • [6] Brustein,R. and Madden, R. , “Classical Corrections in String Cosmology”, J. High Energy Phys. JHEP 07: 006-031 (1999)
  • [7] Hawking, S.W., “A Non Singular Universe”, Phys. Scr., T117 : 49-50 (2005)
  • [8] Özkurt, Ş.S., “De Sitter like nonsingular cosmological solution for the inflationary era in the very early universe”, http://eprints.ictp.it/472/, (2008)

A GENERALIZED DE SITTER LIKE NONSINGULAR COSMOLOGICAL SOLUTION FOR THE INFLATIONARY ERA AND THE FRIEDMANN ERA IN THE VERY EARLY UNIVERSE

Yıl 2008, Sayı: 016, 13 - 16, 15.09.2008

Öz

A generalized De Sitter like nonsingular cosmological solution for the inflationary era and the Friedmann era in the very early universe is found to the ten dimensional effective Einstein field equations with the effective perfect fluid source. The validity criteria of this solution in the inflationary era does not satisfy the null energy condition (NEC). This solution contains the quantum correction function which explains the phase transition of the universe from the inflationary phase to the Friedmann phase in nowadays. The actual universe space and the internal space are the Ricci flat spaces.

Kaynakça

  • [1] Hawking, S.W., "The Quantum Theory of the Universe", in Intersection between Elementary Particle Physics and Cosmology edited by T. Piran and S. Weinberg, Jerusalem 28 Dec 1983 - 6 Jan 1984 World Publishing, 75 (1986)
  • [2] Blau, S.K. and Guth, A.H., "Inflationary cosmology", in Three Hundred Years of Gravitation edited by S. W. Hawking and W.Israel, Cambridge University Press, 540 (1987)
  • [3] Appelquist, T., Freund, P.G.O., Chodos, A., "Modern Kaluza-Klein Theories", Addison Wesley, (1987)
  • [4] Linde, A.D., "Inflation and Quantum Cosmology", Academic Pres, (1990)
  • [5] Dereli, T. and Tucker, R.W., “Dynamical Reduction of Internal Dimensions”, Phys.Lett. 125B: 133-135 (1983)
  • [6] Brustein,R. and Madden, R. , “Classical Corrections in String Cosmology”, J. High Energy Phys. JHEP 07: 006-031 (1999)
  • [7] Hawking, S.W., “A Non Singular Universe”, Phys. Scr., T117 : 49-50 (2005)
  • [8] Özkurt, Ş.S., “De Sitter like nonsingular cosmological solution for the inflationary era in the very early universe”, http://eprints.ictp.it/472/, (2008)
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şuayyip Salim Özkurt Bu kişi benim

Yayımlanma Tarihi 15 Eylül 2008
Yayımlandığı Sayı Yıl 2008 Sayı: 016

Kaynak Göster

APA Özkurt, Ş. S. (2008). A GENERALIZED DE SITTER LIKE NONSINGULAR COSMOLOGICAL SOLUTION FOR THE INFLATIONARY ERA AND THE FRIEDMANN ERA IN THE VERY EARLY UNIVERSE. Journal of Science and Technology of Dumlupınar University(016), 13-16.