Araştırma Makalesi
BibTex RIS Kaynak Göster

EVALUATION OF BLANK SHAPES IN DEEP DRAWING OF ALUMINUM SQUARE CUP

Yıl 2004, Sayı: 006, 185 - 200, 15.10.2004

Öz

In this study, different blank shapes obtained from

anisotropic aluminum sheet has been investigated by drawing in the

form of square cup. No any failure (tearing and fracturing) occured

in the drawn cups. Namely, they are useable. The results shown that;

optimum blank shape reduces scrap metal and costs but also, leads to

slightly wrinkling and bad surface quality. There are more scrap

metal and costs in the cups obtained from the otherblank shapes due

to greater earing and projection but, the surface quality especially in

the corners of the cups becomes better.

Kaynakça

  • [1] Y.Q. Guo, J.L. Batoz, H. Naceur, S. Bouabdallah, S. Mercier and O. Barlet, Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Computers and Structures 78 (2000) 133-148 (Pergamon).
  • [2] S.H. Park, J.W. Yoon, D.Y. Yang and Y.H. Kim, Optimum blank design in sheet metal forming by the deformation path iteration method, International Journal of Mechanical Sciences 41 (1999) 1217-1232 (Pergamon).
  • [3] K. Son and H. Shim, Optimal blank shape design using the initial velocity of boundary nodes, Journal of Materials Processing Technology, 134 (2003) 92-98.
  • [4] T. Jimma, Deep drawing convex polygon shell researches on the deep drawing of sheet metal by the slip line theory, 1st report, Japan Soc. Tech. Plast. 11 (1970) 653.
  • [5] V.V. Hazek and K. Lange, Use of slip line field method in deep drawing of large irregular shaped components, Proc. 7th NAMRC, 1979, p.65.
  • [6] M. Karima, Blank development and tooling design drawn parts using a modified slip line field based approach, ASME Trans. J. Eng. Ind. 111 (1989) 345.
  • [7] J.H. Vogel and D. Lee, An analysis method for deep drawing process design, Int. J. Mech. Sci. 32 (1990) 891.
  • [8] X. Chen and R. Sowerby, The development of ideal blank shapes by the method of plane stress characteristics, Int. J. Mech. Sci. 34 (1992) 159.
  • [9] R. Sowerby, J.L. Duncan and E. Chu, The modeling of sheet metal stamping, Int. J. Mech. Sci. 28 (1986) 415.
  • [10] G.N. Blount and P.R. Stevens, Blank shape analysis for heavy gauge metal forming, J. Mater. Process. Technol. 24 (1990) 65.
  • [11] S.A. Majlessi and D. Lee, Further development of sheet metal forming analysis method, ASME Trans. J. Eng. Ind. 109 (1987) 330.
  • [12] S.A. Majlessi and D. Lee, Development of multistage sheet metal forming analysis method, J. Mater. Shaping Technol. 6 (1988) 41.
  • [13] S.A. Majlessi and D. Lee, Deep drawing of square-shaped sheet metal parts, part 1: finite element analysis, ASME Trans. J. Eng. Ind. 115 (1993) 102.
  • [14] S. Levy, C.F. Shinh, J.P.D. Wilkinson, P. Stine and R.C. McWilson, Analysis of sheet metal forming to axisymmetric shapes, in: B.A. Niemeier, A.K. Schmeider, J.R. Newby (Eds.), Formability Topics—Metallic Materials, ASTM, Toronto, Canada, 1978, p. 238.
  • [15] J.L. Batoz, Y.Q. Guo, P. Duroux, and J.M. Detraux, An efficient algorithm to estimate the large strains in deep drwing, NUMIFORM ‘89, Fort Collins, CO, USA, A.A. Balkema, Rotterdam, 1989, p. 383.
  • [16] J.L. Batoz, Y.Q. Guo, and J.M. Detraux, An inverse finite element procedure to estimate the large plastic strain in sheet metal forming, Proc. 3rd Int. Conf. on Technology of Plasticity 3, 1990, Kyoto, Japan, p. 1403.
  • [17] Y.Q. Guo, J.L. Batoz, J.M. Detraux and P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Numer. Methods Eng. 30 (1990) 1385.
  • [18] Y.Q. Guo, J.L. Batoz, M.El. Mouatassim, and J.M. Detraux, On the estimation of thickness strain in thin car panels by the inverse approach, in: J.L. Chenot, R.D. Wood, O.C. Zienkiewicz (Eds.), NUMIFORM ’92, Valbonne, France, A.A. Balkema, Rotterdam, 1992, p. 473.
  • [19] K. Chung and O. Richmond, Ideal forming—I. Homogeneous deformation with minimum plastic work, Int. J. Mech. Sci. 34 (1992) 575.
  • [20] K. Chung and O. Richmond, Ideal forming—II. Sheet forming with optimum deformation, Int. J. Mech. Sci. 34 (1992) 617.
  • [21] K. Chung and O. Richmond, Sheet forming process design based on ideal forming theory, in: J.L. Chenot, R.D. Wood, O.C. Zienkiewicz (Eds.), NUMIFORM ’92, Valbonne, France, A.A. Balkema, Rotterdam, 1992, p. 455.
  • [22] K. Chung and O. Richmond, The mechanics of ideal forming, J. Appl. Mech. 61 (1994) 176.
  • [23] S.H. Kim and H. Huh, Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis, Journal of Materials Processing Technology, 130-131 (2002) 482-489.
  • [24] H. Shim, K. Son and K. Kim, Optimum blank shape by sensitivity analysis, Journal of Materials Processing Technology, 104 (2000) 191-199.
  • [25] N. Kishor and D.R. Kumar, Optimization of initial blank shape to minimize earing in deep drawing using finite element method, Journal of Materials Processing Technology, 130-131 (2002) 20-30.
  • [26] W. Huaibao, X. Weili, L. Zhongqin, Y. Yuying and Z.R. Wang, Stamping and stamping simulation with a blankholder gap, Journal of Materials Processing Technology, 120 (2002) 62-67.

ALÜMİNYUM KARE KABIN DERİN ÇEKİLMESİNDE TASLAK MALZEME ŞEKİLLERİNİN DEĞERLENDİRİLMESİ

Yıl 2004, Sayı: 006, 185 - 200, 15.10.2004

Öz

Bu çalışmada, anizotropik alüminyum sactan hazırlanan değişik taslak malzeme

şekilleri kare kap biçiminde derin çekilerek incelenmiştir. Çekilen tüm parçalarda

herhangi bir yırtılma/kopma meydana gelmemiş yani kullanılabilir durumda elde

edilmişlerdir. Optimum taslak malzeme biçimleri ile çekilen kaplarda hurda malzeme

miktarı ve buna bağlı olarak maliyetler azalmakta ancak, hafif buruşmalar meydana

gelmekte ve bu nedenle de yüzey kalitesi bozulmaktadır. Diğer taslak malzeme

şekillerinden elde edilen kaplarda ise, kulaklanma/dalgalanma oldukça fazla

olduğundan hurda malzeme miktarı ve buna bağlı olarak maliyetler artmakta fakat

özellikle köşelerdeki yüzey kalitesi daha iyi elde edilmektedir.

Kaynakça

  • [1] Y.Q. Guo, J.L. Batoz, H. Naceur, S. Bouabdallah, S. Mercier and O. Barlet, Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Computers and Structures 78 (2000) 133-148 (Pergamon).
  • [2] S.H. Park, J.W. Yoon, D.Y. Yang and Y.H. Kim, Optimum blank design in sheet metal forming by the deformation path iteration method, International Journal of Mechanical Sciences 41 (1999) 1217-1232 (Pergamon).
  • [3] K. Son and H. Shim, Optimal blank shape design using the initial velocity of boundary nodes, Journal of Materials Processing Technology, 134 (2003) 92-98.
  • [4] T. Jimma, Deep drawing convex polygon shell researches on the deep drawing of sheet metal by the slip line theory, 1st report, Japan Soc. Tech. Plast. 11 (1970) 653.
  • [5] V.V. Hazek and K. Lange, Use of slip line field method in deep drawing of large irregular shaped components, Proc. 7th NAMRC, 1979, p.65.
  • [6] M. Karima, Blank development and tooling design drawn parts using a modified slip line field based approach, ASME Trans. J. Eng. Ind. 111 (1989) 345.
  • [7] J.H. Vogel and D. Lee, An analysis method for deep drawing process design, Int. J. Mech. Sci. 32 (1990) 891.
  • [8] X. Chen and R. Sowerby, The development of ideal blank shapes by the method of plane stress characteristics, Int. J. Mech. Sci. 34 (1992) 159.
  • [9] R. Sowerby, J.L. Duncan and E. Chu, The modeling of sheet metal stamping, Int. J. Mech. Sci. 28 (1986) 415.
  • [10] G.N. Blount and P.R. Stevens, Blank shape analysis for heavy gauge metal forming, J. Mater. Process. Technol. 24 (1990) 65.
  • [11] S.A. Majlessi and D. Lee, Further development of sheet metal forming analysis method, ASME Trans. J. Eng. Ind. 109 (1987) 330.
  • [12] S.A. Majlessi and D. Lee, Development of multistage sheet metal forming analysis method, J. Mater. Shaping Technol. 6 (1988) 41.
  • [13] S.A. Majlessi and D. Lee, Deep drawing of square-shaped sheet metal parts, part 1: finite element analysis, ASME Trans. J. Eng. Ind. 115 (1993) 102.
  • [14] S. Levy, C.F. Shinh, J.P.D. Wilkinson, P. Stine and R.C. McWilson, Analysis of sheet metal forming to axisymmetric shapes, in: B.A. Niemeier, A.K. Schmeider, J.R. Newby (Eds.), Formability Topics—Metallic Materials, ASTM, Toronto, Canada, 1978, p. 238.
  • [15] J.L. Batoz, Y.Q. Guo, P. Duroux, and J.M. Detraux, An efficient algorithm to estimate the large strains in deep drwing, NUMIFORM ‘89, Fort Collins, CO, USA, A.A. Balkema, Rotterdam, 1989, p. 383.
  • [16] J.L. Batoz, Y.Q. Guo, and J.M. Detraux, An inverse finite element procedure to estimate the large plastic strain in sheet metal forming, Proc. 3rd Int. Conf. on Technology of Plasticity 3, 1990, Kyoto, Japan, p. 1403.
  • [17] Y.Q. Guo, J.L. Batoz, J.M. Detraux and P. Duroux, Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Numer. Methods Eng. 30 (1990) 1385.
  • [18] Y.Q. Guo, J.L. Batoz, M.El. Mouatassim, and J.M. Detraux, On the estimation of thickness strain in thin car panels by the inverse approach, in: J.L. Chenot, R.D. Wood, O.C. Zienkiewicz (Eds.), NUMIFORM ’92, Valbonne, France, A.A. Balkema, Rotterdam, 1992, p. 473.
  • [19] K. Chung and O. Richmond, Ideal forming—I. Homogeneous deformation with minimum plastic work, Int. J. Mech. Sci. 34 (1992) 575.
  • [20] K. Chung and O. Richmond, Ideal forming—II. Sheet forming with optimum deformation, Int. J. Mech. Sci. 34 (1992) 617.
  • [21] K. Chung and O. Richmond, Sheet forming process design based on ideal forming theory, in: J.L. Chenot, R.D. Wood, O.C. Zienkiewicz (Eds.), NUMIFORM ’92, Valbonne, France, A.A. Balkema, Rotterdam, 1992, p. 455.
  • [22] K. Chung and O. Richmond, The mechanics of ideal forming, J. Appl. Mech. 61 (1994) 176.
  • [23] S.H. Kim and H. Huh, Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis, Journal of Materials Processing Technology, 130-131 (2002) 482-489.
  • [24] H. Shim, K. Son and K. Kim, Optimum blank shape by sensitivity analysis, Journal of Materials Processing Technology, 104 (2000) 191-199.
  • [25] N. Kishor and D.R. Kumar, Optimization of initial blank shape to minimize earing in deep drawing using finite element method, Journal of Materials Processing Technology, 130-131 (2002) 20-30.
  • [26] W. Huaibao, X. Weili, L. Zhongqin, Y. Yuying and Z.R. Wang, Stamping and stamping simulation with a blankholder gap, Journal of Materials Processing Technology, 120 (2002) 62-67.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

M. Gavas Bu kişi benim

İ. Küçükrendeci Bu kişi benim

Yayımlanma Tarihi 15 Ekim 2004
Yayımlandığı Sayı Yıl 2004 Sayı: 006

Kaynak Göster

APA Gavas, M., & Küçükrendeci, İ. (2004). ALÜMİNYUM KARE KABIN DERİN ÇEKİLMESİNDE TASLAK MALZEME ŞEKİLLERİNİN DEĞERLENDİRİLMESİ. Journal of Science and Technology of Dumlupınar University(006), 185-200.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.