Araştırma Makalesi
BibTex RIS Kaynak Göster

%10 GALYUM KATKILI ZnO FİLMİNİN YAPISAL, YÜZEY MORFOLOJİSİ, OPTİK ve ELEKTRİK ÖZELLİKLERİ

Yıl 2019, Sayı: 043, 108 - 124, 31.12.2019

Öz



Saf ve %10 galyum (Ga) katkılı çinko oksit (ZnO) filmlerinin ultrasonik sprey piroliz tekniğiyle cam tabanlar üzerine sentezlendi. Saf ve katkılı filmlerin yapısal, yüzey morfolojisi, optik ve elektriksel özellikleri X–ışını kırınım (XRD) örneği, atomik kuvvet mikroskopisi (AFM), ultraviyole ve görünür ışık (UV–Vis) spektrofotometresi ve dört prob tekniği ile analizlendi; sırasıyla. XRD sonuçlarından %10 Ga katkılanmasıyla tercihli yönelimin (100) dan (002) ye değiştiği gözlendi. Ayrıca, hem Scherrer Metodu hem de Williamson–Hall (W–H) Metodu ile hesaplanan filmlerin tanecik boyutu ve gerilim değerleri karşılaştırıldı. Bu karşılaştırmanın sonucunda, Scherrer Metoduyla hesaplanan değerler W–H Metodu ile hesaplanan değerlerden daha küçük bulundu. Tüm deneysel sonuçları, galyum katkısıyla Urbach enerjisi azalırken, tanecik boyutunun, yüzey pürüzlülüğünün, enerji band aralığının ve elektrik iletkenliğinin arttığını göstermiştir. Sonuç olarak, ZnO filminin kristalliği %10 Ga katkısıyla geliştiği gözlenmiştir.

Kaynakça

  • [1] Kumar, M., Singh, B., Yadav, P., Bhatt, V., Kumar, M., Singh, K., Abhyankar, A. C., Kumar, A. and Yun, J. H., (2017), Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique, Ceram. Int. 43, 3562–3568.
  • [2] Manoharan, C., Dhanapandian, S., Arunachalam, A. and Bououdina, M., (2016), Physical properties of spray pyrolysized nano flower ZnO thin films, J. Alloy. Comp., 685, 395–401.
  • [3] Demchenko, D. O., Earles, B., Liu, H. Y., Avrutin, V., Izyumskaya, N., Ozgur, U. and Morkoc, H., (2011), Impurity complexes and conductivity of Ga-doped ZnO, Phys. Rev. B: Condens. Matter., 84, 075201–5.
  • [4] Enigochitra, A. S., Perumal, P., Sanjeeviraja, C., Deivamani, D. and Boomashri, M., (2016), Influence of substrate temperature on structural and optical properties of ZnO thin films prepared by cost–effective chemical spray pyrolysis technique, Superlattices Microstruct., 90, 313–320.
  • [5] Muchuweni, E., Sathiaraj, T. S. and Nyakotyo, H., (2016), Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis, Ceram. Int., 42, 10066–10070.
  • [6] Gabas, M., Landa–Canovas, A., Costa–Kramer, J. L., Agullo–Rueda, F., Gonzalez–Elipe, A. R., Diaz–Carrasco, P., Hernandez–Moro, J., Lorite, I., Herrero, P., Castillero, P., Barranco, A. and Ramos–Barrado, J. R., (2013), Differences in n–type doping efficiency between Al– and Ga–ZnO films, J. Appl. Phys., 113, 163709–9.
  • [7] Jia, J., Yoshimura, A., Kagoya, Y., Oka, N. and Shigesato, Y., (2014), Transparent conductive Al and Ga doped ZnO films deposited using off-axis sputtering, Thin Solid Films, 559, 69–77.
  • [8] Olvera, M de la L., Gomez, H. and Maldonado, A., (2007), Doping, vacuum annealing, and thickness effect on the physical properties of zinc oxide films deposited by spray pyrolysis, Sol. Energy Materials Sol. Cells, 91, 1449–1453.
  • [9] Oh, S. J., Jung, M. N., Ha, S. Y., Choi, S. G., Kim, J. J., Kobayashi, K., Lee, S. T., Lee, H. C., Cho, Y. R., Yao, T. and Chang, J. H., (2008), Microstructure evolution of highly Ga–doped ZnO nanocrystals, Physica E, 41, 31– 35.
  • [10] Barnita, P., Budhi, S., Subhasis, G. and Anushree, R., (2016), A comparative study on electrical and optical properties of group III (Al, Ga, In) doped ZnO, Thin Solid Films, 603, 21–28.
  • [11] Tsay, C. Y., Wu, C. W., Lei, C. M., Chen, F. S. and Lin, C. K., (2010), Microstructural and optical properties of Ga–doped ZnO semiconductor thin films prepared by sol–gel process, Thin Solid Films, 519, 1516–1520.
  • [12] Ivanova, T., Harizanova, A., Koutzarova, T. and Vetruyen, B., (2017), Optical and structural study of Ga and In co-doped ZnO films, Colloids Surf. A., 532, 357–362.
  • [13] Li, C. and Hou, Q., (2020), Built-in magnetic-electrical coupling enhances photocatalytic performance of GaN/ZnO: A first principle study, Physica B., 579, 411902–411905.
  • [14] Li, X., Hu, Z., Liu, J., Li, D., Zhang, X., Chen, J. and Fang, J., (2016), Ga doped ZnO photonic crystals with enhanced photocatalytic activity and its reaction mechanism, Applied Catalysis B: Environmental, 195, 29–38.
  • [15] Ali, A., Zhao, X., Ali, A., Duan, L., Niu, H., Peng, C., Wang, Y. and Hou, S., (2015), Enhanced photocatalytic activity of ZnO nanorods grown on Ga doped seed layer, Superlattices and Microstructures, 83, 422–430.
  • [16] Sitthichai, S., Phuruangrat, A., Thongtem, T. and Thongtem, S., (2017), Influence of Mg dopant on photocatalytic properties of Mg–doped ZnO nanoparticles prepared by sol–gel method, Journal of the Ceramic Society of Japan, 125(3), 122–124.
  • [17] Dhawan, R. and Panda, E., (2019), Mg addition in undoped and Al–doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering, Journal of Alloys and Compounds, 788, 1037–1047.
  • [18] Moditswe, C., Muiva, C. M. and Juma, A., (2016), Highly conductive and transparent Ga–doped ZnO thin films deposited by chemical spray pyrolysis, Optik, 127, 8317–8325.
  • [19] Mandalapu, L. J., Xiu, F. X., Yang, Z. and Liu, J. L., (2007), Ultraviolet photoconductive detectors based on Ga–doped ZnO films grown by molecular beam epitaxy, Solid–State Electron., 51, 1014–1017.
  • [20] Young, S. J. and Liu, Y. H., (2015), Ultraviolet photodetectors with Ga–doped ZnO nanosheets structure, Microelectron. Eng., 148, 14–16.
  • [21] Kaul, A. R., Gorbenko, O. Yu., Botev, A. N. and Burova, L. I., (2005), MOCVD of pure and Ga doped epitaxial ZnO, Superlattices Microstruct. 38, 272–282.
  • [22] Terasako, T., Ogura, Y., Fujimoto, S., Song, H., Makino, H., Yagi, M., Shirakata, S. and Yamamoto, T., (2013), Carrier transport and photoluminescence properties of Ga–doped ZnO films grown by ion–plating and by atmospheric–pressure CVD, Thin Solid Films, 549, 12–17.
  • [23] Berry, J. J., Ginley, D. S. and Burrows, P. E., (2008), Organic light emitting diodes using a Ga:ZnO anode, Appl. Phys. Lett. 92, 193304–3.
  • [24] Estrada, M., Rivas, M., Garduño, I., Avila Herrera, F., Cerdeira, A., Pavanello, M., Mejia, I. and Quevedo Lopez, M. A., (2016), Temperature dependence of the electrical characteristics up to 370 K of amorphous In–Ga–ZnO thin film transistors, Microelectronics Reliability, 56, 29–33.
  • [25] Babar, A. R., Deshamukh, P. R., Deokate, R. J., Haranath, D., Bhosale, C. H. and Rajpure, K. Y., (2008), Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis, J. Phys. D: Appl. Phys., 41, 135404–6.
  • [26] Tang, W. and Cameron, D. C., (1994), Aluminum–doped zinc oxide transparent conductors deposited by the sol–gel process, Thin Solid Films, 238, 83–87.
  • [27] Winer, I., Shter, G. E., Mann Lahav, M. and Grader, G. S., (2011), Effect of solvents and stabilizers on sol–gel deposition of Ga–doped zinc oxide TCO films, J. Mater. Res. 26(10), 1309–1315.
  • [28] Chamberlin, R. R. and Skarman, J. S., (1966), Chemical Spray Deposition Process for Inorganic Films, Technical Notes, 113(1), 86–89.
  • [29] Patil, P. S., (1999), Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics, 59, 185–198.
  • [30] Untila, G.G., Kost, T.N. and Chebotareva, A.B., (2019), Fluorine–doped ZnO (FZO) films produced by corona–discharge–assisted ultrasonic spray pyrolysis and hydrogenation as electron–selective contacts in FZO/SiOx/p–Si heterojunction crystalline silicon solar cells with 11.7% efficiency, Solar Energy, 179, 352–362.
  • [31] Untila, G.G., Kost, T.N. and Chebotareva, A.B., (2019), F–In–codoped ZnO (FIZO) films produced by corona–discharge–assisted ultrasonic spray pyrolysis and hydrogenation as electron–selective contacts in FIZO/SiOx/p–Si heterojunction crystalline silicon solar cells with 10.5% efficiency, Solar Energy, 181, 148–160.
  • [32] El Hichou, A., Addou, M., Mansori, M. and Ebothe J., (2009), Structural, optical and luminescent characteristics of sprayed fluorine–doped In2O3 thin films for solar cells, Solar Energy Materials & Solar Cells, 93, 609–612.
  • [33] Zhou, Z.B., Cui, R.Q., Pang, Q.J., Wang, Y.D., Meng, F.Y., Sun, T.T., Ding, Z.M. and Yu, X.B., (2001), Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process, Applied Surface Science, 172, 245–252.
  • [34] Abbas, T. A–H., Slewa, L. H., Khizir, H. A. and Kakil, S. A., (2017), Synthesis of cobalt oxide (Co3O4) thin films by electrostatic spray pyrolysis technique (ESP), J. Mater. Sci.: Mater. Electron., 28(2), 1951–1957.
  • [35] Siefert, W., (1984), Corona Spray Pyrolysis: A new coating technique with an extremely enhanced deposition efficiency, Thin Solid Films, 120, 261–214.
  • [36] Kul, M., Aybek, A. S., Turan, E., Zor, M. and Irmak, S., (2007), Effects of fluorine doping on the structural properties of the CdO films deposited by ultrasonic spray pyrolysis, Solar Energy Materials & Solar Cells, 91, 1927–1933.
  • [37] Kul, M., Zor, M., Aybek, A. S., Irmak, S. and Turan, E., (2007), Electrical and optical properties of fluorine doped CdO films deposited by ultrasonic spray pyrolysis, Sol. Energy Mater. Sol. Cells, 91, 882–887.
  • [38] Khorsand Zak, A., Majid, W. H. A., Abrishami, M. E. and Yousefi, R., (2011), X–ray analysis of ZnO nanoparticles by Williamson Hall and size strain plot methods, Solid State Sciences, 13, 251–256.
  • [39] Mote, V. D., Purushotham, Y. and Dole, B. N., (2012), Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, 6(6), 2–8.
  • [40] Monshi, A., Foroughi, M. R. and Monshi, M. R., (2012), Modified Scherrer equation to estimate more accurately nano–crystallite size using XRD, Word Journal of Nano Science and Enginnering, 2, 154–160.
  • [41] Jeyaprakash, B. G., Kesavan, K., Ashok Kumar, R., Mohan, S. and Amalarani, A., (2011), Temperature dependent grain-size and microstrain of CdO thin films prepared by spray pyrolysis method, Bull. Mater. Sci. 34(4), 601–605.
  • [42] Chaabouni, F., Khalfallah, B. and Abaab, M., (2016), Doping Ga effect on ZnO radio frequency sputtered films from a powder target, Thin Solid Films, 617, 95–102.
  • [43] Chen, Y., Meng, F., Ge, F. and Huang, F., (2017), Ga-doped ZnO films by magnetron sputtering at ultralow dischargevoltages: Effects of defect annihilation, Thin Solid Films, 644, 16–22.
  • [44] Cheng, H., Deng, H., Wang, Y. and Wei, M., (2017), Influence of ZnO buffer layer on the electrical, optical and surface properties of Ga–doped ZnO films, Journal of Alloys and Compounds, 705, 598–601.
  • [45] Gabás, M., Ochoa–Martínez, E., Navarrete–Astorga E., Landa–Cánovas, A.R., Herrero, P., Agulló–Rueda, F., Palanco, S., Martínez–Serrano, J.J. and Ramos–Barrado, J.R., (2017), Characterization of the interface between highly conductive Ga:ZnO films and the silicon substrate, Applied Surface Science, 419, 595–602.
  • [46] Kapustianyk, V. B., Turko, B. I., Rudyk, V. P., Kulyk, B. Y. and Rudko, M. S., (2015), Effect of dopants and surface morphology on the absorption edge of ZnO films doped with In, Al, and Ga, Journal of Applied Spectroscopy, 82, 153–156.
  • [47] Kim, J–H. and Yer, I–H., (2016), Characterization of ZnO nanowires grown on Ga–doped ZnO transparent conductive thin films: Effect of deposition temperature of Ga–doped ZnO thin films, Ceramics International, 42, 3304–3308.
  • [48] Kim, D–K. and Kim, H–B., (2017), Initial vacuum effects on the properties of sputter deposited Ga-doped ZnO thin films, Journal of Alloys and Compounds, 709, 627–632.
  • [49] Muchuweni, E., Sathiaraj, T.S. and Nyakotyo, H., (2016), Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis, Ceramics International, 42, 10066–10070.
  • [50] Sharma, R., Lee, H., Borse, K., Gupta, V., Joshi, A. G., Yoo, S. and Gupta, D., (2017), Ga–doped ZnO as an electron transport layer for PffBT4T–2OD:PC70BM organic solar cells, Org. Electron. 43, 207–213.
  • [51] Nakagawara, O., Kishimoto, Y., Seto, H., Koshido, Y., Yoshino, Y. and Makino, T., (2006), Moisture-resistant ZnO transparent conductive films with Ga heavy doping, Appl. Phy. Lett., 89, 091904–3.
  • [52] Prabhu, Y. T., Rao, K. V., Kumar, V. S. S. and Kumari, B. S., (2013) , X-ray Analysis of Fe doped ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot, International Journal of Engineering and Advanced Technology (IJEAT), 2(4), 268–274.
  • [53] Arunachalam, A., Dhanapandian, S. and Manoharan, C., (2016), Effect of Sn doping on the structural, optical and electrical properties of TiO2 films prepared by spray pyrolysis, Physica E, 76, 35–46.
  • [54] Sun, Y., Thompson, S. E. and Nishida, T., (2007), Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effecttransistors, Journal of Applied Physics 101, 104503–104503-22.
  • [55] Dhanapandian, S., Arunachalam, A. and Manoharan, C., (2016), Effect of deposition parameters on the properties of TiO2 thin films prepared by spray pyrolysis, J. Sol–Gel Sci. Technol., 77, 119–135.
  • [56] Caglar, M., Ilican, S. and Caglar, Y., (2009), Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method, Thin Solid Films, 517, 5023–5028.
  • [57] Duran, P., Capel, F., Tartaj, J. and Moure, C., (2002), A strategic two–stage low–temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors, Adv. Mater., 14(2), 137–141.
  • [58] Ungula, J., Dejene, B. F. and Swart, H. C., (2018), Band gap engineering, enhanced morphology and photoluminescence of undoped, Ga and/or Al–doped ZnO nanoparticles by reflux precipitation Method, J. Lumin., 195, 54–60.
  • [59] Thirumoorthi, M. and Prakash, J. T. J., (2016), Structure, optical and electrical properties of indium tin oxide ultrathin films prepared by jet nebulizer spray pyrolysis technique, Journal of Asian Ceramic Societies, 4, 124–132.
  • [60] Lee, J. H., and Park, B. O., (2003), Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method, Thin Solid Films, 426, 94–99.

THE STRUCTURAL, SURFACE MORPHOLOGY, OPTICAL AND ELECTRICAL PROPERTIES OF ZnO FILM DOPED GALLIUM AT 10%

Yıl 2019, Sayı: 043, 108 - 124, 31.12.2019

Öz



The pure and 10% gallium (Ga) doped zinc oxide (ZnO) films synthesized on glass substrates by ultrasonic spray pyrolysis technique. The structural, surface morphology, optical and electrical properties of pure and doped films were analysed by X–ray diffraction (XRD) pattern, atomic force microscopy (AFM), Ultraviolet – Visible (UV–Vis) spectrophotometer and four probe technique, respectively. It observed from the results of XRD that the preferred orientation changed from (100) to (002) with Ga doping at 10 %. Also, the grain size and strain values of films calculated both Scherrer Method and Williamson–Hall (W–H) Method were compared. In the result of this comparison, the values calculated by Scherrer Method were found to be smaller than the values calculated by W–H Method. All experimental results show that the grain size, surface roughness, energy band gap and electrical conductivity increased as its Urbach energy decreased with the addition of gallium. As a result, the crystallinity of ZnO film was observed to improve with doping Ga at 10 %.

Kaynakça

  • [1] Kumar, M., Singh, B., Yadav, P., Bhatt, V., Kumar, M., Singh, K., Abhyankar, A. C., Kumar, A. and Yun, J. H., (2017), Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique, Ceram. Int. 43, 3562–3568.
  • [2] Manoharan, C., Dhanapandian, S., Arunachalam, A. and Bououdina, M., (2016), Physical properties of spray pyrolysized nano flower ZnO thin films, J. Alloy. Comp., 685, 395–401.
  • [3] Demchenko, D. O., Earles, B., Liu, H. Y., Avrutin, V., Izyumskaya, N., Ozgur, U. and Morkoc, H., (2011), Impurity complexes and conductivity of Ga-doped ZnO, Phys. Rev. B: Condens. Matter., 84, 075201–5.
  • [4] Enigochitra, A. S., Perumal, P., Sanjeeviraja, C., Deivamani, D. and Boomashri, M., (2016), Influence of substrate temperature on structural and optical properties of ZnO thin films prepared by cost–effective chemical spray pyrolysis technique, Superlattices Microstruct., 90, 313–320.
  • [5] Muchuweni, E., Sathiaraj, T. S. and Nyakotyo, H., (2016), Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis, Ceram. Int., 42, 10066–10070.
  • [6] Gabas, M., Landa–Canovas, A., Costa–Kramer, J. L., Agullo–Rueda, F., Gonzalez–Elipe, A. R., Diaz–Carrasco, P., Hernandez–Moro, J., Lorite, I., Herrero, P., Castillero, P., Barranco, A. and Ramos–Barrado, J. R., (2013), Differences in n–type doping efficiency between Al– and Ga–ZnO films, J. Appl. Phys., 113, 163709–9.
  • [7] Jia, J., Yoshimura, A., Kagoya, Y., Oka, N. and Shigesato, Y., (2014), Transparent conductive Al and Ga doped ZnO films deposited using off-axis sputtering, Thin Solid Films, 559, 69–77.
  • [8] Olvera, M de la L., Gomez, H. and Maldonado, A., (2007), Doping, vacuum annealing, and thickness effect on the physical properties of zinc oxide films deposited by spray pyrolysis, Sol. Energy Materials Sol. Cells, 91, 1449–1453.
  • [9] Oh, S. J., Jung, M. N., Ha, S. Y., Choi, S. G., Kim, J. J., Kobayashi, K., Lee, S. T., Lee, H. C., Cho, Y. R., Yao, T. and Chang, J. H., (2008), Microstructure evolution of highly Ga–doped ZnO nanocrystals, Physica E, 41, 31– 35.
  • [10] Barnita, P., Budhi, S., Subhasis, G. and Anushree, R., (2016), A comparative study on electrical and optical properties of group III (Al, Ga, In) doped ZnO, Thin Solid Films, 603, 21–28.
  • [11] Tsay, C. Y., Wu, C. W., Lei, C. M., Chen, F. S. and Lin, C. K., (2010), Microstructural and optical properties of Ga–doped ZnO semiconductor thin films prepared by sol–gel process, Thin Solid Films, 519, 1516–1520.
  • [12] Ivanova, T., Harizanova, A., Koutzarova, T. and Vetruyen, B., (2017), Optical and structural study of Ga and In co-doped ZnO films, Colloids Surf. A., 532, 357–362.
  • [13] Li, C. and Hou, Q., (2020), Built-in magnetic-electrical coupling enhances photocatalytic performance of GaN/ZnO: A first principle study, Physica B., 579, 411902–411905.
  • [14] Li, X., Hu, Z., Liu, J., Li, D., Zhang, X., Chen, J. and Fang, J., (2016), Ga doped ZnO photonic crystals with enhanced photocatalytic activity and its reaction mechanism, Applied Catalysis B: Environmental, 195, 29–38.
  • [15] Ali, A., Zhao, X., Ali, A., Duan, L., Niu, H., Peng, C., Wang, Y. and Hou, S., (2015), Enhanced photocatalytic activity of ZnO nanorods grown on Ga doped seed layer, Superlattices and Microstructures, 83, 422–430.
  • [16] Sitthichai, S., Phuruangrat, A., Thongtem, T. and Thongtem, S., (2017), Influence of Mg dopant on photocatalytic properties of Mg–doped ZnO nanoparticles prepared by sol–gel method, Journal of the Ceramic Society of Japan, 125(3), 122–124.
  • [17] Dhawan, R. and Panda, E., (2019), Mg addition in undoped and Al–doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering, Journal of Alloys and Compounds, 788, 1037–1047.
  • [18] Moditswe, C., Muiva, C. M. and Juma, A., (2016), Highly conductive and transparent Ga–doped ZnO thin films deposited by chemical spray pyrolysis, Optik, 127, 8317–8325.
  • [19] Mandalapu, L. J., Xiu, F. X., Yang, Z. and Liu, J. L., (2007), Ultraviolet photoconductive detectors based on Ga–doped ZnO films grown by molecular beam epitaxy, Solid–State Electron., 51, 1014–1017.
  • [20] Young, S. J. and Liu, Y. H., (2015), Ultraviolet photodetectors with Ga–doped ZnO nanosheets structure, Microelectron. Eng., 148, 14–16.
  • [21] Kaul, A. R., Gorbenko, O. Yu., Botev, A. N. and Burova, L. I., (2005), MOCVD of pure and Ga doped epitaxial ZnO, Superlattices Microstruct. 38, 272–282.
  • [22] Terasako, T., Ogura, Y., Fujimoto, S., Song, H., Makino, H., Yagi, M., Shirakata, S. and Yamamoto, T., (2013), Carrier transport and photoluminescence properties of Ga–doped ZnO films grown by ion–plating and by atmospheric–pressure CVD, Thin Solid Films, 549, 12–17.
  • [23] Berry, J. J., Ginley, D. S. and Burrows, P. E., (2008), Organic light emitting diodes using a Ga:ZnO anode, Appl. Phys. Lett. 92, 193304–3.
  • [24] Estrada, M., Rivas, M., Garduño, I., Avila Herrera, F., Cerdeira, A., Pavanello, M., Mejia, I. and Quevedo Lopez, M. A., (2016), Temperature dependence of the electrical characteristics up to 370 K of amorphous In–Ga–ZnO thin film transistors, Microelectronics Reliability, 56, 29–33.
  • [25] Babar, A. R., Deshamukh, P. R., Deokate, R. J., Haranath, D., Bhosale, C. H. and Rajpure, K. Y., (2008), Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis, J. Phys. D: Appl. Phys., 41, 135404–6.
  • [26] Tang, W. and Cameron, D. C., (1994), Aluminum–doped zinc oxide transparent conductors deposited by the sol–gel process, Thin Solid Films, 238, 83–87.
  • [27] Winer, I., Shter, G. E., Mann Lahav, M. and Grader, G. S., (2011), Effect of solvents and stabilizers on sol–gel deposition of Ga–doped zinc oxide TCO films, J. Mater. Res. 26(10), 1309–1315.
  • [28] Chamberlin, R. R. and Skarman, J. S., (1966), Chemical Spray Deposition Process for Inorganic Films, Technical Notes, 113(1), 86–89.
  • [29] Patil, P. S., (1999), Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics, 59, 185–198.
  • [30] Untila, G.G., Kost, T.N. and Chebotareva, A.B., (2019), Fluorine–doped ZnO (FZO) films produced by corona–discharge–assisted ultrasonic spray pyrolysis and hydrogenation as electron–selective contacts in FZO/SiOx/p–Si heterojunction crystalline silicon solar cells with 11.7% efficiency, Solar Energy, 179, 352–362.
  • [31] Untila, G.G., Kost, T.N. and Chebotareva, A.B., (2019), F–In–codoped ZnO (FIZO) films produced by corona–discharge–assisted ultrasonic spray pyrolysis and hydrogenation as electron–selective contacts in FIZO/SiOx/p–Si heterojunction crystalline silicon solar cells with 10.5% efficiency, Solar Energy, 181, 148–160.
  • [32] El Hichou, A., Addou, M., Mansori, M. and Ebothe J., (2009), Structural, optical and luminescent characteristics of sprayed fluorine–doped In2O3 thin films for solar cells, Solar Energy Materials & Solar Cells, 93, 609–612.
  • [33] Zhou, Z.B., Cui, R.Q., Pang, Q.J., Wang, Y.D., Meng, F.Y., Sun, T.T., Ding, Z.M. and Yu, X.B., (2001), Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process, Applied Surface Science, 172, 245–252.
  • [34] Abbas, T. A–H., Slewa, L. H., Khizir, H. A. and Kakil, S. A., (2017), Synthesis of cobalt oxide (Co3O4) thin films by electrostatic spray pyrolysis technique (ESP), J. Mater. Sci.: Mater. Electron., 28(2), 1951–1957.
  • [35] Siefert, W., (1984), Corona Spray Pyrolysis: A new coating technique with an extremely enhanced deposition efficiency, Thin Solid Films, 120, 261–214.
  • [36] Kul, M., Aybek, A. S., Turan, E., Zor, M. and Irmak, S., (2007), Effects of fluorine doping on the structural properties of the CdO films deposited by ultrasonic spray pyrolysis, Solar Energy Materials & Solar Cells, 91, 1927–1933.
  • [37] Kul, M., Zor, M., Aybek, A. S., Irmak, S. and Turan, E., (2007), Electrical and optical properties of fluorine doped CdO films deposited by ultrasonic spray pyrolysis, Sol. Energy Mater. Sol. Cells, 91, 882–887.
  • [38] Khorsand Zak, A., Majid, W. H. A., Abrishami, M. E. and Yousefi, R., (2011), X–ray analysis of ZnO nanoparticles by Williamson Hall and size strain plot methods, Solid State Sciences, 13, 251–256.
  • [39] Mote, V. D., Purushotham, Y. and Dole, B. N., (2012), Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, 6(6), 2–8.
  • [40] Monshi, A., Foroughi, M. R. and Monshi, M. R., (2012), Modified Scherrer equation to estimate more accurately nano–crystallite size using XRD, Word Journal of Nano Science and Enginnering, 2, 154–160.
  • [41] Jeyaprakash, B. G., Kesavan, K., Ashok Kumar, R., Mohan, S. and Amalarani, A., (2011), Temperature dependent grain-size and microstrain of CdO thin films prepared by spray pyrolysis method, Bull. Mater. Sci. 34(4), 601–605.
  • [42] Chaabouni, F., Khalfallah, B. and Abaab, M., (2016), Doping Ga effect on ZnO radio frequency sputtered films from a powder target, Thin Solid Films, 617, 95–102.
  • [43] Chen, Y., Meng, F., Ge, F. and Huang, F., (2017), Ga-doped ZnO films by magnetron sputtering at ultralow dischargevoltages: Effects of defect annihilation, Thin Solid Films, 644, 16–22.
  • [44] Cheng, H., Deng, H., Wang, Y. and Wei, M., (2017), Influence of ZnO buffer layer on the electrical, optical and surface properties of Ga–doped ZnO films, Journal of Alloys and Compounds, 705, 598–601.
  • [45] Gabás, M., Ochoa–Martínez, E., Navarrete–Astorga E., Landa–Cánovas, A.R., Herrero, P., Agulló–Rueda, F., Palanco, S., Martínez–Serrano, J.J. and Ramos–Barrado, J.R., (2017), Characterization of the interface between highly conductive Ga:ZnO films and the silicon substrate, Applied Surface Science, 419, 595–602.
  • [46] Kapustianyk, V. B., Turko, B. I., Rudyk, V. P., Kulyk, B. Y. and Rudko, M. S., (2015), Effect of dopants and surface morphology on the absorption edge of ZnO films doped with In, Al, and Ga, Journal of Applied Spectroscopy, 82, 153–156.
  • [47] Kim, J–H. and Yer, I–H., (2016), Characterization of ZnO nanowires grown on Ga–doped ZnO transparent conductive thin films: Effect of deposition temperature of Ga–doped ZnO thin films, Ceramics International, 42, 3304–3308.
  • [48] Kim, D–K. and Kim, H–B., (2017), Initial vacuum effects on the properties of sputter deposited Ga-doped ZnO thin films, Journal of Alloys and Compounds, 709, 627–632.
  • [49] Muchuweni, E., Sathiaraj, T.S. and Nyakotyo, H., (2016), Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis, Ceramics International, 42, 10066–10070.
  • [50] Sharma, R., Lee, H., Borse, K., Gupta, V., Joshi, A. G., Yoo, S. and Gupta, D., (2017), Ga–doped ZnO as an electron transport layer for PffBT4T–2OD:PC70BM organic solar cells, Org. Electron. 43, 207–213.
  • [51] Nakagawara, O., Kishimoto, Y., Seto, H., Koshido, Y., Yoshino, Y. and Makino, T., (2006), Moisture-resistant ZnO transparent conductive films with Ga heavy doping, Appl. Phy. Lett., 89, 091904–3.
  • [52] Prabhu, Y. T., Rao, K. V., Kumar, V. S. S. and Kumari, B. S., (2013) , X-ray Analysis of Fe doped ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot, International Journal of Engineering and Advanced Technology (IJEAT), 2(4), 268–274.
  • [53] Arunachalam, A., Dhanapandian, S. and Manoharan, C., (2016), Effect of Sn doping on the structural, optical and electrical properties of TiO2 films prepared by spray pyrolysis, Physica E, 76, 35–46.
  • [54] Sun, Y., Thompson, S. E. and Nishida, T., (2007), Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effecttransistors, Journal of Applied Physics 101, 104503–104503-22.
  • [55] Dhanapandian, S., Arunachalam, A. and Manoharan, C., (2016), Effect of deposition parameters on the properties of TiO2 thin films prepared by spray pyrolysis, J. Sol–Gel Sci. Technol., 77, 119–135.
  • [56] Caglar, M., Ilican, S. and Caglar, Y., (2009), Influence of dopant concentration on the optical properties of ZnO: In films by sol–gel method, Thin Solid Films, 517, 5023–5028.
  • [57] Duran, P., Capel, F., Tartaj, J. and Moure, C., (2002), A strategic two–stage low–temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors, Adv. Mater., 14(2), 137–141.
  • [58] Ungula, J., Dejene, B. F. and Swart, H. C., (2018), Band gap engineering, enhanced morphology and photoluminescence of undoped, Ga and/or Al–doped ZnO nanoparticles by reflux precipitation Method, J. Lumin., 195, 54–60.
  • [59] Thirumoorthi, M. and Prakash, J. T. J., (2016), Structure, optical and electrical properties of indium tin oxide ultrathin films prepared by jet nebulizer spray pyrolysis technique, Journal of Asian Ceramic Societies, 4, 124–132.
  • [60] Lee, J. H., and Park, B. O., (2003), Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method, Thin Solid Films, 426, 94–99.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

H. Senem Aydoğu 0000-0003-2426-9162

Seda Uzkalan Bu kişi benim 0000-0003-2564-6484

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 043

Kaynak Göster

APA Aydoğu, H. S., & Uzkalan, S. (2019). THE STRUCTURAL, SURFACE MORPHOLOGY, OPTICAL AND ELECTRICAL PROPERTIES OF ZnO FILM DOPED GALLIUM AT 10%. Journal of Science and Technology of Dumlupınar University(043), 108-124.