BibTex RIS Kaynak Göster

19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE

Yıl 2015, Sayı: 43, 0 - 0, 20.06.2015

Öz

As a result of the increase of people's living standards, the number of vehicles has increased. The increasing number of vehicles has led to an increase in traffic density. Thus, an increased risk of accident and motor own damage insurance has led to their becoming mandatory. The insurance companies, taking into account the rate of profit, the race began to propose the most affordable prices for customers. At the same time, the companies must bid a fair price. The companies can achieve by making risk analysis of their customers. In this study, we aimed a modeldevelopment to do customers risk analysis for insurance companies. Artificial neural network was used for this risk analysis by determining the167 policy data of an insurance company in Turkey. Neural network was used nearly 126 for the training and 41 for the testing of a total 167 policies. As the input of neural networks, 12 parameters were used related to driver and vehicle, the estimate gross premiums as an output parameter. Our model calculated with 93% accuracy for education when calculating with 92% accuracy for testing on gross premiums cost of the policy by using the Matlab Toolbox. These results have shown that developed system can be used to calculate the amount of gross premiums of insurance policies and to analyse the customers

Kaynakça

  • Dalkilic, N., Sevim, S. and Gulbandilar, E. (2013). Fuzzy logic method with risk assessment modelling and an application in life insurance, XIVth International Symposium on Econometrics, Operations Research and Statistics, 224, Sarajevo/Bosnia and Herzegovina, May 24‐28, 2013.
  • Forsstrom, J.J. (1995). Artificial neural networks for decision support in clinical medicine, Ann. Med., 27, 509–517.
  • Fragiadakis, N.G., Tsoukalas, V.D. and V.J. Papazoglou, V.J. (2014). An adaptive neuro-fuzzy inference system (ANFIS) model for assessing occupational risk in the ship building industry, Safety Science, 63, 226-235.
  • Guelmana, L., Guillénb, M. and Pérez-Marín, A.M. (2014). A survey of personalized treatment models for pricing strategies in insurance”, Insurance: Mathematics and conomics, 58, 68-76.
  • Hazine Müsteşarlığı, 2013 Yılı Türkiye'de Sigortacılık ve Bireysel Emeklilik Faaliyetleri Hakkında Rapor, http://www.hazine.gov.tr/default.aspx?nsw=BKsmUPQeFbnBXCDahr Xm1A==
  • H7deC+LxBI8=&mid=247&cid=28&nm=318# (Erişim Tarihi: 20.12.2013).
  • Hazine Müsteşarlığı, Basın Açıklaması, Sayı: 2012/24, http://www.hazine.gov.tr/File/?path=
  • ROOT%2fDocuments%2fSigortacılık+ve+Özel+Emeklilik+Basın+Duyurusu%2fSGM_20130212_24_kasko.doc (Erişim Tarihi: 02014).
  • Kara Araçları Sigortası Genel Şartları, http://www.tsb.org.tr/kara-araclari-kasko-sigortasi-genel-sartlari-yururluk-tarihi-01-04- 20aspx?pageID=501 (Erişim Tarihi: 24.08.2014).
  • Lin, C. (2009). Using neural networks as a support tool in the decision making for insurance industry, Expert Systems with Applications, 36(3), 6914-6917.
  • Shapiro, A.F. (2002). The merging of neural networks, fuzzy logic, and genetic algorithms, Insurance: Mathematics and Economics, 31(1), 115-131.
  • Türkiye Sigorta Birliği, www.tsb.org.tr/kasko-deger-listesi.aspx?pageID=631 (Erişim Tarihi: 24.08.2014).
  • Zhao, Y. and Cen, J. (2014). Data Mining Applications with R, Chapter 7, Editor: M. Patel, M. Gupta, “Caravan Insurance
  • Customer Profile Modeling with R”, Academic Press, Waltham, USA, 181–227.

19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE

Yıl 2015, Sayı: 43, 0 - 0, 20.06.2015

Öz

İnsanların yaşam standartlarının artması sonucu araç sayısı artmıştır. Araç sayısının artması da trafik yoğunluğunda artmaya neden olmuştur. Bu yoğunluk kaza riskinin artmasına ve araç kasko sigortalarının yaptırılmasını gereksinim haline getirmiştir. Bu gereksinim ile birlikte sigorta şirketleri, müşterilerine kendi kar oranlarını da hesaba katarak en uygun fiyatı sunma çabası içerisine girmişlerdir. Aynı zamanda da sigorta şirketleri müşterilere ucuz poliçe teklifi de sunmalıdırlar. Şirketler bu işlemi müşterilerinin risk analizini yaparak sağlayabileceklerdir. Çalışmamızda sigorta şirketlerinin müşteri risk analizini yapacak bir yazılım geliştirme hedeflenmiştir. Bu risk analizini belirlemek için Türkiye’deki bir sigorta şirketinin 167 poliçe bilgisi yapay sinir ağları yöntemi ile kullanılmıştır. 167 poliçenin, 126 âdeti sinir ağının eğitimi 41 tanesi test için seçilmiştir. Yapay sinir ağlarının girişi olarak, sürücü ve araç ile ilgili 12 parametre kullanılarak brüt prim tutarı tahmin ettirilmiştir. MatLab Toolbox kullanılarak, eğitim için %93 oranında doğruluk ile brüt poliçe primi hesaplanırken test için %92 oranında brüt poliçe primi hesaplanmıştır. Bu sonuçlar doğrultusunda geliştirmiş olduğumuz sistem, sigorta poliçelerinin brüt prim tutarlarının hesaplanarak müşteri analizinde kullanılabileceğini göstermiştir

Kaynakça

  • Dalkilic, N., Sevim, S. and Gulbandilar, E. (2013). Fuzzy logic method with risk assessment modelling and an application in life insurance, XIVth International Symposium on Econometrics, Operations Research and Statistics, 224, Sarajevo/Bosnia and Herzegovina, May 24‐28, 2013.
  • Forsstrom, J.J. (1995). Artificial neural networks for decision support in clinical medicine, Ann. Med., 27, 509–517.
  • Fragiadakis, N.G., Tsoukalas, V.D. and V.J. Papazoglou, V.J. (2014). An adaptive neuro-fuzzy inference system (ANFIS) model for assessing occupational risk in the ship building industry, Safety Science, 63, 226-235.
  • Guelmana, L., Guillénb, M. and Pérez-Marín, A.M. (2014). A survey of personalized treatment models for pricing strategies in insurance”, Insurance: Mathematics and conomics, 58, 68-76.
  • Hazine Müsteşarlığı, 2013 Yılı Türkiye'de Sigortacılık ve Bireysel Emeklilik Faaliyetleri Hakkında Rapor, http://www.hazine.gov.tr/default.aspx?nsw=BKsmUPQeFbnBXCDahr Xm1A==
  • H7deC+LxBI8=&mid=247&cid=28&nm=318# (Erişim Tarihi: 20.12.2013).
  • Hazine Müsteşarlığı, Basın Açıklaması, Sayı: 2012/24, http://www.hazine.gov.tr/File/?path=
  • ROOT%2fDocuments%2fSigortacılık+ve+Özel+Emeklilik+Basın+Duyurusu%2fSGM_20130212_24_kasko.doc (Erişim Tarihi: 02014).
  • Kara Araçları Sigortası Genel Şartları, http://www.tsb.org.tr/kara-araclari-kasko-sigortasi-genel-sartlari-yururluk-tarihi-01-04- 20aspx?pageID=501 (Erişim Tarihi: 24.08.2014).
  • Lin, C. (2009). Using neural networks as a support tool in the decision making for insurance industry, Expert Systems with Applications, 36(3), 6914-6917.
  • Shapiro, A.F. (2002). The merging of neural networks, fuzzy logic, and genetic algorithms, Insurance: Mathematics and Economics, 31(1), 115-131.
  • Türkiye Sigorta Birliği, www.tsb.org.tr/kasko-deger-listesi.aspx?pageID=631 (Erişim Tarihi: 24.08.2014).
  • Zhao, Y. and Cen, J. (2014). Data Mining Applications with R, Chapter 7, Editor: M. Patel, M. Gupta, “Caravan Insurance
  • Customer Profile Modeling with R”, Academic Press, Waltham, USA, 181–227.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fuat Yelken Bu kişi benim

Eyyup Gulbandılar Bu kişi benim

Nilufer Dalkılıc Bu kişi benim

Cemal Kocak Bu kişi benim

Yayımlanma Tarihi 20 Haziran 2015
Yayımlandığı Sayı Yıl 2015 Sayı: 43

Kaynak Göster

APA Yelken, F., Gulbandılar, E., Dalkılıc, N., Kocak, C. (2015). 19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi(43).
AMA Yelken F, Gulbandılar E, Dalkılıc N, Kocak C. 19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. Haziran 2015;(43).
Chicago Yelken, Fuat, Eyyup Gulbandılar, Nilufer Dalkılıc, ve Cemal Kocak. “19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE”. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, sy. 43 (Haziran 2015).
EndNote Yelken F, Gulbandılar E, Dalkılıc N, Kocak C (01 Haziran 2015) 19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi 43
IEEE F. Yelken, E. Gulbandılar, N. Dalkılıc, ve C. Kocak, “19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE”, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, sy. 43, Haziran 2015.
ISNAD Yelken, Fuat vd. “19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE”. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi 43 (Haziran 2015).
JAMA Yelken F, Gulbandılar E, Dalkılıc N, Kocak C. 19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. 2015.
MLA Yelken, Fuat vd. “19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE”. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, sy. 43, 2015.
Vancouver Yelken F, Gulbandılar E, Dalkılıc N, Kocak C. 19.RISK DETERMINED OF MOTOR OWN DAMAGE INSURANCE BY POLICIES USING ARTIFICIAL INTELLIGENCE. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi. 2015(43).

Dergimiz EBSCOhost, ULAKBİM/Sosyal Bilimler Veri Tabanında, SOBİAD ve Türk Eğitim İndeksi'nde yer alan uluslararası hakemli bir dergidir.