As a result of the increase of people's living standards, the number of vehicles has increased. The increasing number of vehicles has led to an increase in traffic density. Thus, an increased risk of accident and motor own damage insurance has led to their becoming mandatory. The insurance companies, taking into account the rate of profit, the race began to propose the most affordable prices for customers. At the same time, the companies must bid a fair price. The companies can achieve by making risk analysis of their customers. In this study, we aimed a modeldevelopment to do customers risk analysis for insurance companies. Artificial neural network was used for this risk analysis by determining the167 policy data of an insurance company in Turkey. Neural network was used nearly 126 for the training and 41 for the testing of a total 167 policies. As the input of neural networks, 12 parameters were used related to driver and vehicle, the estimate gross premiums as an output parameter. Our model calculated with 93% accuracy for education when calculating with 92% accuracy for testing on gross premiums cost of the policy by using the Matlab Toolbox. These results have shown that developed system can be used to calculate the amount of gross premiums of insurance policies and to analyse the customers
Artificial neuronal networks policy motor own damage insurance gross premium
İnsanların yaşam standartlarının artması sonucu araç sayısı artmıştır. Araç sayısının artması da trafik yoğunluğunda artmaya neden olmuştur. Bu yoğunluk kaza riskinin artmasına ve araç kasko sigortalarının yaptırılmasını gereksinim haline getirmiştir. Bu gereksinim ile birlikte sigorta şirketleri, müşterilerine kendi kar oranlarını da hesaba katarak en uygun fiyatı sunma çabası içerisine girmişlerdir. Aynı zamanda da sigorta şirketleri müşterilere ucuz poliçe teklifi de sunmalıdırlar. Şirketler bu işlemi müşterilerinin risk analizini yaparak sağlayabileceklerdir. Çalışmamızda sigorta şirketlerinin müşteri risk analizini yapacak bir yazılım geliştirme hedeflenmiştir. Bu risk analizini belirlemek için Türkiye’deki bir sigorta şirketinin 167 poliçe bilgisi yapay sinir ağları yöntemi ile kullanılmıştır. 167 poliçenin, 126 âdeti sinir ağının eğitimi 41 tanesi test için seçilmiştir. Yapay sinir ağlarının girişi olarak, sürücü ve araç ile ilgili 12 parametre kullanılarak brüt prim tutarı tahmin ettirilmiştir. MatLab Toolbox kullanılarak, eğitim için %93 oranında doğruluk ile brüt poliçe primi hesaplanırken test için %92 oranında brüt poliçe primi hesaplanmıştır. Bu sonuçlar doğrultusunda geliştirmiş olduğumuz sistem, sigorta poliçelerinin brüt prim tutarlarının hesaplanarak müşteri analizinde kullanılabileceğini göstermiştir
Birincil Dil | Türkçe |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 20 Haziran 2015 |
Yayımlandığı Sayı | Yıl 2015 Sayı: 43 |
Dergimiz EBSCOhost, ULAKBİM/Sosyal Bilimler Veri Tabanında, SOBİAD ve Türk Eğitim İndeksi'nde yer alan uluslararası hakemli bir dergidir.