Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams

Yıl 2024, , 2387 - 2399, 23.10.2024
https://doi.org/10.29130/dubited.1551010

Öz

Sandwich composite elements are used in many sectors thanks to their low weight/strength ratios, high bending strength, good thermal insulation properties, and low costs. It is widely used in the machinery and construction industry, especially in land, sea, and air vehicles. The main objective of this research is to design and produce lightweight, durable, insulated, and low-cost, sustainable building elements that will meet emergency shelter needs after disasters. For housing purposes, 24 sandwich beams were prepared, eight designs with different surface coatings and core materials, and three in each design group. The effects of surface coating and core material on behavior were investigated with four-point bending experiments. Load-displacement relationships were determined from the experiments, and the beams' load-carrying capacities and failure patterns under the effects of bending and shearing were determined. In addition, theoretical methods determined maximum load values and compared them with the results of the experiments. As a result of the experiments, it was concluded that the best-performing design under bending effects was sandwich beams with plywood surface and XPS core.

Kaynakça

  • [1] E. Işık, “Structural failures of adobe buildings during the February 2023 Kahramanmaraş (Türkiye) earthquakes,” Applied Science, vol. 13, no. 15, pp. 8937, 2023.
  • [2] A. Demir, E. Celebi, H. Ozturk, Z. Ozcan, A. Ozocak, E. Bol, S. Sert, F.Z. Sahin, E. Arslan, Z.D. Yaman, M. Utkucu and N. Mert, “Destructive impact of successive high magnitude earthquakes occurred in Türkiye’s Kahramanmaraş on February 6, 2023,” Bulletin of Earthquake Engineering, pp. 1-27, 2024.
  • [3] E. Çelebi, M. Aktas, N. Çağlar, A. Özocak, M. Kutanis, N. Mert and Z. Özcan, “October 23, 2011, Turkey/Van–Ercis earthquake: structural damages in the residential buildings,” Natural Hazards, vol. 65, pp. 2287–2310, 2013.
  • [4] E. Arkan, E. Işık, E. Harirchian, M. Topçubaşı and F. Avcil, “Architectural characteristics and determination seismic risk priorities of traditional masonry structures: a case study for Bitlis (Eastern Türkiye),” Buildings, vol. 13, no. 4, pp. 1042, 2023.
  • [5] R. Kassab and P. Sadeghian, “A comparative study on the mechanical properties of sandwich beams made with PET FRP facings and varied recycled PET cores,” Composite Structures, vol. 344, pp. 118340, 2024.
  • [6] A. Manalo, T. Aravinthan, W. Karunasena and A. Ticoalu, “A review of alternative materials for replacing existing timber sleepers,” Composite Structures, vol. 92, no. 3, pp. 603–611 2010.
  • [7] G. Dhaliwal and G. Newaz, “Flexural response of degraded polyurethane foam core sandwich beam with initial crack between face sheet and core," Materials, vol. 13, no. 23, pp.1–18, 2020.
  • [8] J.R. Liew and K. Sohel, “Structural performance of steel-concrete-steel sandwich composite structures,” Advanced Structural Engineering, vol. 13, no. 3, pp. 453–470, 2010.
  • [9] M. Dawood, E. Taylor and S. Rizkalla, “Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions,” Composite Structures, vol. 92, no. 4, pp. 950–963, 2010.
  • [10] K.M. A Sohel and J.Y.R. Liew, “Steel-Concrete-Steel sandwich slabs with lightweight core-Static performance,” Engineering Structures, vol. 33, no. 3, pp. 981–992, 2011.
  • [11] J.L. Grenestedt and B. Bekisli, “Analyses and preliminary tests of a balsa sandwich core with improved shear properties,” International Journal of Mechanical Sciences, vol. 45, no. 8, pp.1327–1346, 2003.
  • [12] A.G. Mamalis, K.N. Spentzas, D.E. Manolakos, M.B. Ioannidis and D.P. Papapostolou, “Experimental investigation of the collapse modes and the main crushing characteristics of composite sandwich panels subjected to flexural loading,” International Journal of Crashworthiness, vo. 13, no. 4, pp. 349–362, 2008.
  • [13] E.M. Reis and S.H. Rizkalla, “Material characteristics of 3-D FRP sandwich panels,” Construction and Building Materials, vol. 22, no. 6, pp. 1009–1018, 2008.
  • [14] T.M. McCormack, R. Miller, O. Kesler and L.J. Gibson, “Failure of sandwich beams with metallic foam cores,” International Journal Solid and Structures, vol. 38. No. 28, pp. 4901–4920, 2001.
  • [15] K. Kabir, T. Vodenitcharova and M. Hoffman, “Response of aluminum foam-cored sandwich panels to bending load,” Composite Part B: Engineering, vol. 64, pp. 24–32, 2014.
  • [16] A.A. Nia and M.Z. Sadeghi, “The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study,” Materials and Design, vol. 31, no. 3, pp. 1216–1230, 2010.
  • [17] N. Geren, Ç. Uzay, M. H. Boztepe ve M. Bayramoğlu, “Sandviç Malzeme Geliştirmede Polimer Köpük Çekirdek Kalınlığının Eğilme Dayanımına Etkisinin Deneysel olarak Araştırılması”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, c. 32, s. 2, ss. 13–22, 2017
  • [18] F. Balıkoğlu and T. K. Demircioğlu, “Experimental and Theoretical Study on Behaviour of Geometrically Asymmetric Composite Marine Sandwich Beams under Bending Load,” DUBİTED, 10(4), pp. 1776–1792, 2022.
  • [19] E. Camcı, “Metal Esaslı Sandviç Kompozitlerin Balistik Performansının İncelenmesi,” DÜBİTED, c. 8, s. 2, ss. 1454–1469, 2020.
  • [20] S. Subaşı, V. Çetin ve A. Şamandar, “Kompozit Panellerde CTP Levha ve Çekirdek Kalınlığının Mekanik Özelliklere Etkisi,” El-Cezeri Journal of Science and Engineering, c. 4, s. 2, ss. 135–145, 2017.
  • [21] J. Fajrin, Y. Zhuge, F. Bullen and H. Wang, “Flexural behaviour of hybrid sandwich panel with natural fiber composites as the intermediate layer,” Journal of Mechanical Engineering and Sciences, vol. 10, no. 2, pp. 1968-1983, 2016.
  • [22] C. Borsellino, L. Calabrese and. A. Valenza, “Experimental and numerical evaluation of sandwich composite structures,” Composites Science and Technology, vol. 64, pp. 1709–1715, 2004.
  • [23] C. Atas and U. Potoğlu, “The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores,” Journal of Sandwich Structures and Materials, pp. 1–14, 2015.
  • [24] E. Avlar, S. Limoncu and, D. Tızman, “Post-earthquake temporary housing unit: CLT E-BOX,” Journal of the Faculty of Eng. and Arch. of Gazi University, vol. 38, no. 1, pp. 471-482, 2023.
  • [25] R. Sarmento, M. Posani, P. Fernandes, A.M. Rodrigues and M.G. Gomes, “Energy efficiency in modular emergency shelters: Impact of envelope finishings and shadowing,” Journal of Building Engineering, vol. 94, pp. 110029, 2024.
  • [26] J. Li, G.W. Foden, S.K.W. Chow and L.S. To, “Integrating sustainable and energy-resilient strategies into emergency shelter design,” Renewable and Sustainable Energy Reviews, vol. 191, pp. 113968, 2024.
  • [27] R. Potangaroa, “Sustainability by Design: The Challenge of Shelter in Post Disaster Reconstruction,” Procedia - Social and Behavioral Sciences, vol. 179, pp. 212-221, 2015.
  • [28] S.M. Şener and M.C. Altun, “Design of a post disaster temporary shelter unit,” ITU A|Z, vol. 6, no. 2, pp. 58-74, 2009.
  • [29] A. Petras and M.P.F. Sutcliffe, “Indentation resistance of sandwich beams,” Composite Structures, vol. 46, no. 4, pp. 413-424, 1999.
  • [30] A. Petras and M.P.F Sutcliffe, “Indentation failure analysis of sandwich beams,” Composite Structures, vol. 50, no. 3, pp. 311-318, 2000.
  • [31] F. Aviles and L. Carlsson, “Experimental Study of Debonded Sandwich Panels Under Compressive Loading,” Journal of Sandwich Structures and Materials, vol. 8, no. 1, pp. 7-31, 2006.
  • [32] F. Yuan, A.H. Sheikh and G. Li, “Analysis of Intact/Delaminated Composite and Sandwich Beams Using a Higher-Order Modeling Technique,” Journal of Composites Science, vol. 8, no. 5, pp. 175, 2024.
  • [33] W. Su and S. Liu, “A couple-stress model to predict the wrinkling stress of sandwich panels with foam cores,” Composite Structures, vol. 268, pp. 113978, 2021.
  • [34] V. Kahya, “Buckling analysis of laminated composite and sandwich beams by the finite element method,” Composites Part B: Engineering, vol. 91, pp. 126-134, 2016.
  • [35] Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure, ASTM C393 / C393M-16, 2016.
  • [36] R.K. Pekgökgöz, G. İzol, F. Avcil, M.A. Gürel, "Experimental and Numerical Investigation of the Tendon Layout Effect on Flexural Capacity in Post-Tensioning Beams", Tehnički vjesnik, vol. 31, no. 5, pp. 1553-1560, 2024.
  • [37] Standard Test Method for Facesheet Properties of Sandwich Constructions by Long Beam Flexure, ASTM D7249 / D7249M-20, 2020.
  • [38] Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness, ASTM D7250 / D7250M-16, 2016.
  • [39] C.A. Steeves and N.A. Fleck, “Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: Analytical models and minimum weight design,” International Journal of Mechanical Sciences, vol. 46, no. 4, pp. 561-583, 2004.
  • [40] A.C. Manalo, T. Aravinthan, W. Karunasena and M.M. Islam, “Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions”, Composite Structures, vol. 92, no. 4, pp. 984-995, 2010.

Çekirdek ve Yüzey Malzeme Özelliklerin Hafif Kompozit Sandviç Kirişlerin Eğilme Davranışı Üzerindeki Etkileri

Yıl 2024, , 2387 - 2399, 23.10.2024
https://doi.org/10.29130/dubited.1551010

Öz

Sandviç kompozit elemanlar düşük ağırlık/dayanım oranları, yüksek eğilme dayanımı, iyi ısı yalıtım özellikleri ve düşük maliyetleri sayesinde birçok sektörde kullanılmaktadır. Makine ve inşaat sektöründe, özellikle kara, deniz ve hava taşıtlarında yaygın olarak kullanılmaktadır. Bu araştırmanın temel amacı, afetlerden sonra acil barınma ihtiyaçlarını karşılamaya yönelik hafif, dayanıklı, yalıtımlı ve düşük maliyetli, sürdürülebilir yapı elemanları tasarlamaktır. Çalışmada, farklı yüzey kaplamaları ve çekirdek malzemelerine sahip sekiz tasarım ve her tasarım grubunda üç olmak üzere 24 sandviç kiriş hazırlanmıştır. Yüzey kaplaması ve çekirdek malzemesinin davranış üzerindeki etkileri dört noktalı eğilme deneyleriyle araştırılmıştır. Deneylerden yük-yer değiştirme ilişkileri belirlenmiş ve kirişlerin eğilme ve kesme etkileri altındaki yük taşıma kapasiteleri ve hasar desenleri belirlenmiştir. Ayrıca, teorik yöntemlerle maksimum yük değerleri belirlenmiş ve deneylerin sonuçlarıyla karşılaştırılmıştır. Deneyler sonucunda, eğilme etkileri altında en iyi performansı gösteren tasarımın kontrplak yüzeyli, XPS çekirdekli sandviç kirişler olduğu sonucuna varılmıştır.

Kaynakça

  • [1] E. Işık, “Structural failures of adobe buildings during the February 2023 Kahramanmaraş (Türkiye) earthquakes,” Applied Science, vol. 13, no. 15, pp. 8937, 2023.
  • [2] A. Demir, E. Celebi, H. Ozturk, Z. Ozcan, A. Ozocak, E. Bol, S. Sert, F.Z. Sahin, E. Arslan, Z.D. Yaman, M. Utkucu and N. Mert, “Destructive impact of successive high magnitude earthquakes occurred in Türkiye’s Kahramanmaraş on February 6, 2023,” Bulletin of Earthquake Engineering, pp. 1-27, 2024.
  • [3] E. Çelebi, M. Aktas, N. Çağlar, A. Özocak, M. Kutanis, N. Mert and Z. Özcan, “October 23, 2011, Turkey/Van–Ercis earthquake: structural damages in the residential buildings,” Natural Hazards, vol. 65, pp. 2287–2310, 2013.
  • [4] E. Arkan, E. Işık, E. Harirchian, M. Topçubaşı and F. Avcil, “Architectural characteristics and determination seismic risk priorities of traditional masonry structures: a case study for Bitlis (Eastern Türkiye),” Buildings, vol. 13, no. 4, pp. 1042, 2023.
  • [5] R. Kassab and P. Sadeghian, “A comparative study on the mechanical properties of sandwich beams made with PET FRP facings and varied recycled PET cores,” Composite Structures, vol. 344, pp. 118340, 2024.
  • [6] A. Manalo, T. Aravinthan, W. Karunasena and A. Ticoalu, “A review of alternative materials for replacing existing timber sleepers,” Composite Structures, vol. 92, no. 3, pp. 603–611 2010.
  • [7] G. Dhaliwal and G. Newaz, “Flexural response of degraded polyurethane foam core sandwich beam with initial crack between face sheet and core," Materials, vol. 13, no. 23, pp.1–18, 2020.
  • [8] J.R. Liew and K. Sohel, “Structural performance of steel-concrete-steel sandwich composite structures,” Advanced Structural Engineering, vol. 13, no. 3, pp. 453–470, 2010.
  • [9] M. Dawood, E. Taylor and S. Rizkalla, “Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions,” Composite Structures, vol. 92, no. 4, pp. 950–963, 2010.
  • [10] K.M. A Sohel and J.Y.R. Liew, “Steel-Concrete-Steel sandwich slabs with lightweight core-Static performance,” Engineering Structures, vol. 33, no. 3, pp. 981–992, 2011.
  • [11] J.L. Grenestedt and B. Bekisli, “Analyses and preliminary tests of a balsa sandwich core with improved shear properties,” International Journal of Mechanical Sciences, vol. 45, no. 8, pp.1327–1346, 2003.
  • [12] A.G. Mamalis, K.N. Spentzas, D.E. Manolakos, M.B. Ioannidis and D.P. Papapostolou, “Experimental investigation of the collapse modes and the main crushing characteristics of composite sandwich panels subjected to flexural loading,” International Journal of Crashworthiness, vo. 13, no. 4, pp. 349–362, 2008.
  • [13] E.M. Reis and S.H. Rizkalla, “Material characteristics of 3-D FRP sandwich panels,” Construction and Building Materials, vol. 22, no. 6, pp. 1009–1018, 2008.
  • [14] T.M. McCormack, R. Miller, O. Kesler and L.J. Gibson, “Failure of sandwich beams with metallic foam cores,” International Journal Solid and Structures, vol. 38. No. 28, pp. 4901–4920, 2001.
  • [15] K. Kabir, T. Vodenitcharova and M. Hoffman, “Response of aluminum foam-cored sandwich panels to bending load,” Composite Part B: Engineering, vol. 64, pp. 24–32, 2014.
  • [16] A.A. Nia and M.Z. Sadeghi, “The effects of foam filling on compressive response of hexagonal cell aluminum honeycombs under axial loading-experimental study,” Materials and Design, vol. 31, no. 3, pp. 1216–1230, 2010.
  • [17] N. Geren, Ç. Uzay, M. H. Boztepe ve M. Bayramoğlu, “Sandviç Malzeme Geliştirmede Polimer Köpük Çekirdek Kalınlığının Eğilme Dayanımına Etkisinin Deneysel olarak Araştırılması”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, c. 32, s. 2, ss. 13–22, 2017
  • [18] F. Balıkoğlu and T. K. Demircioğlu, “Experimental and Theoretical Study on Behaviour of Geometrically Asymmetric Composite Marine Sandwich Beams under Bending Load,” DUBİTED, 10(4), pp. 1776–1792, 2022.
  • [19] E. Camcı, “Metal Esaslı Sandviç Kompozitlerin Balistik Performansının İncelenmesi,” DÜBİTED, c. 8, s. 2, ss. 1454–1469, 2020.
  • [20] S. Subaşı, V. Çetin ve A. Şamandar, “Kompozit Panellerde CTP Levha ve Çekirdek Kalınlığının Mekanik Özelliklere Etkisi,” El-Cezeri Journal of Science and Engineering, c. 4, s. 2, ss. 135–145, 2017.
  • [21] J. Fajrin, Y. Zhuge, F. Bullen and H. Wang, “Flexural behaviour of hybrid sandwich panel with natural fiber composites as the intermediate layer,” Journal of Mechanical Engineering and Sciences, vol. 10, no. 2, pp. 1968-1983, 2016.
  • [22] C. Borsellino, L. Calabrese and. A. Valenza, “Experimental and numerical evaluation of sandwich composite structures,” Composites Science and Technology, vol. 64, pp. 1709–1715, 2004.
  • [23] C. Atas and U. Potoğlu, “The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores,” Journal of Sandwich Structures and Materials, pp. 1–14, 2015.
  • [24] E. Avlar, S. Limoncu and, D. Tızman, “Post-earthquake temporary housing unit: CLT E-BOX,” Journal of the Faculty of Eng. and Arch. of Gazi University, vol. 38, no. 1, pp. 471-482, 2023.
  • [25] R. Sarmento, M. Posani, P. Fernandes, A.M. Rodrigues and M.G. Gomes, “Energy efficiency in modular emergency shelters: Impact of envelope finishings and shadowing,” Journal of Building Engineering, vol. 94, pp. 110029, 2024.
  • [26] J. Li, G.W. Foden, S.K.W. Chow and L.S. To, “Integrating sustainable and energy-resilient strategies into emergency shelter design,” Renewable and Sustainable Energy Reviews, vol. 191, pp. 113968, 2024.
  • [27] R. Potangaroa, “Sustainability by Design: The Challenge of Shelter in Post Disaster Reconstruction,” Procedia - Social and Behavioral Sciences, vol. 179, pp. 212-221, 2015.
  • [28] S.M. Şener and M.C. Altun, “Design of a post disaster temporary shelter unit,” ITU A|Z, vol. 6, no. 2, pp. 58-74, 2009.
  • [29] A. Petras and M.P.F. Sutcliffe, “Indentation resistance of sandwich beams,” Composite Structures, vol. 46, no. 4, pp. 413-424, 1999.
  • [30] A. Petras and M.P.F Sutcliffe, “Indentation failure analysis of sandwich beams,” Composite Structures, vol. 50, no. 3, pp. 311-318, 2000.
  • [31] F. Aviles and L. Carlsson, “Experimental Study of Debonded Sandwich Panels Under Compressive Loading,” Journal of Sandwich Structures and Materials, vol. 8, no. 1, pp. 7-31, 2006.
  • [32] F. Yuan, A.H. Sheikh and G. Li, “Analysis of Intact/Delaminated Composite and Sandwich Beams Using a Higher-Order Modeling Technique,” Journal of Composites Science, vol. 8, no. 5, pp. 175, 2024.
  • [33] W. Su and S. Liu, “A couple-stress model to predict the wrinkling stress of sandwich panels with foam cores,” Composite Structures, vol. 268, pp. 113978, 2021.
  • [34] V. Kahya, “Buckling analysis of laminated composite and sandwich beams by the finite element method,” Composites Part B: Engineering, vol. 91, pp. 126-134, 2016.
  • [35] Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure, ASTM C393 / C393M-16, 2016.
  • [36] R.K. Pekgökgöz, G. İzol, F. Avcil, M.A. Gürel, "Experimental and Numerical Investigation of the Tendon Layout Effect on Flexural Capacity in Post-Tensioning Beams", Tehnički vjesnik, vol. 31, no. 5, pp. 1553-1560, 2024.
  • [37] Standard Test Method for Facesheet Properties of Sandwich Constructions by Long Beam Flexure, ASTM D7249 / D7249M-20, 2020.
  • [38] Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness, ASTM D7250 / D7250M-16, 2016.
  • [39] C.A. Steeves and N.A. Fleck, “Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: Analytical models and minimum weight design,” International Journal of Mechanical Sciences, vol. 46, no. 4, pp. 561-583, 2004.
  • [40] A.C. Manalo, T. Aravinthan, W. Karunasena and M.M. Islam, “Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions”, Composite Structures, vol. 92, no. 4, pp. 984-995, 2010.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Yapım Mühendisliği, Yapı Malzemeleri, Yapı Mühendisliği
Bölüm Makaleler
Yazarlar

Zeki Özcan 0000-0002-0948-0376

Yayımlanma Tarihi 23 Ekim 2024
Gönderilme Tarihi 16 Eylül 2024
Kabul Tarihi 1 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özcan, Z. (2024). Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams. Duzce University Journal of Science and Technology, 12(4), 2387-2399. https://doi.org/10.29130/dubited.1551010
AMA Özcan Z. Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams. DÜBİTED. Ekim 2024;12(4):2387-2399. doi:10.29130/dubited.1551010
Chicago Özcan, Zeki. “Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams”. Duzce University Journal of Science and Technology 12, sy. 4 (Ekim 2024): 2387-99. https://doi.org/10.29130/dubited.1551010.
EndNote Özcan Z (01 Ekim 2024) Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams. Duzce University Journal of Science and Technology 12 4 2387–2399.
IEEE Z. Özcan, “Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams”, DÜBİTED, c. 12, sy. 4, ss. 2387–2399, 2024, doi: 10.29130/dubited.1551010.
ISNAD Özcan, Zeki. “Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams”. Duzce University Journal of Science and Technology 12/4 (Ekim 2024), 2387-2399. https://doi.org/10.29130/dubited.1551010.
JAMA Özcan Z. Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams. DÜBİTED. 2024;12:2387–2399.
MLA Özcan, Zeki. “Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams”. Duzce University Journal of Science and Technology, c. 12, sy. 4, 2024, ss. 2387-99, doi:10.29130/dubited.1551010.
Vancouver Özcan Z. Effects of Core and Surface Materials on the Flexural Behavior of Lightweight Composites Sandwich Beams. DÜBİTED. 2024;12(4):2387-99.