Research Article
BibTex RIS Cite

Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation

Year 2025, Volume: 13 Issue: 3, 1161 - 1179, 31.07.2025
https://doi.org/10.29130/dubited.1624167

Abstract

Transformers are one of the basic components of electrical power systems and play a critical role in energy conversion. However, overvoltages and environmental stresses can cause failures in transformer insulation systems. These failures can negatively affect reliability by reducing the lifetime of insulation systems and can lead to serious losses in power transmission. Moreover, sudden failures increase economic costs and reduce the overall efficiency of power systems. For this reason, a 3 MVA, 34.5 kV dry-type distribution transformer was modeled using COMSOL Multiphysics software. Based on IEC 60076-3 and IEC 60060-1:2010 standards, a lightning impulse voltage with an amplitude of 170 kV and nominal operating voltage were simultaneously applied to the modeled transformer. Electric field strength, magnetic flux density, and electric potential distributions were analyzed under composite voltage conditions. Under these conditions, the effects of electrical stress on the insulation strength are discussed in detail. The results obtained show the negative effects of composite voltage signal components on the insulation performance of the transformer and potential areas for improvement.

References

  • [1] J. Sun, Q. Yang, P. Su, S. Wu, S. Chen and L. He, “Diagnosis of winding fault in three-winding transformer using lightning impulse voltage,” Electric Power Systems Research, vol. 175, 2019, Art. no. 105898.
  • [2] X. Zhang, H. Wang, R. Guo, Z. Zhang, J. Li and X. Han, “Fault diagnosis technologies for power transformers during the on-site inductive oscillating switching impulse voltage withstand test,” IET Generation, Transmission and Distribution, vol. 16, no. 19, pp. 3894–3905, 2022.
  • [3] M. Florkowski, J. Furgal, M. Kuniewski and P. Pajak, “Comparison of transformer winding responses to standard lightning impulses and operational overvoltages,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 3, pp. 965–974, 2018.
  • [4] E. Tunç and M. Fidan, "Residual Voltage Tests of 4.5 kV Metal Oxide Surge Arrester," in 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Türkiye, 2023, pp. 1-5.
  • [5] R. R. Annadi and C. S. Patsa, “Estimation of switching surge flashover rate of 1200-kV UHVAC transmission line considering switching overvoltage waveshape,” Electrical Engineering, vol. 102, no. 2, pp. 953–966, 2020.
  • [6] Y. Zheng, B. Yu, H. Xu, D. Yan, X. Li and W. He, “Novel method for restraining 35 kV shunt reactor switching overvoltage – phase controlled breaker,” The Journal of Engineering, vol. 2019, no. 16, pp. 742–747, 2019.
  • [7] E. Tunc and M. Fidan, “Experimental and simulation study of pulse current generator,” Electric Power Components and Systems, vol. 52, no. 8, pp. 1316–1327, 2024.
  • [8] L. F. Freitas-Gutierres et al., “Framework for decision-making in preventive maintenance: Electric field analysis and partial discharge diagnosis of high-voltage insulators,” Electric Power Systems Research, vol. 233, 2024, Art. no. 110447.
  • [9] M. Fidan and H. İsmailoǧlu, “CuSO45H2O sıvı direncin harmonikli ve harmoniksiz yüksek gerilim altında kismi boşalma davranışları,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 32, no. 1, pp. 315–323, 2017.
  • [10] Y. Özüpak, “Ansys@maxwell kullanılarak transformatörlerin ani akımlar durumunda meydana gelen elektrik alan analizlerinin gerçekleştirilmesi,” Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 14, pp. 105–116, 2021.
  • [11] Power Transformers - Part 3: Insulation Levels, Dielectric Tests and External Clearances in Air, IEC 60076-3:1980, Geneva, Switzerland, 1980. [Online]. Available: https://forhandsvis.standard.no/product/1890428/en.
  • [12] Y. Özüpak and E. Aslan, “Using artificial neural networks to improve the efficiency of transformers used in wireless power transmission systems for different coil positions,” Revue Roumaine des Sciences Techniques, Série Électrotechnique et Énergétique, vol. 69, pp. 195–200, 2024.
  • [13] Y. Özüpak and M. S. Mamiş, “Analysis of electromagnetic and loss effects of sub-harmonics on transformers by Finite Element Method,” Sādhanā, vol. 45, 2020, Art. no. 226.
  • [14] R. Hu, Z. Zhang, S. Wang, Y. Lu, L. Liu and S. Zhu, “Electric field optimization of cast resin dry-type transformer under lightning impulse,” in Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP), IEEE, Richland, WA, Washington, USA, 2019, pp. 556-559.
  • [15] M. M. Ispirli, B. Oral and Ö. Kalenderli, “Electric field analysis of 66 kV and 110 kV SiR insulators under combined AC–DC voltages,” Energy Reports, vol. 8, pp. 361–368, 2022.
  • [16] M. Yazici, Ö. Kalenderli and M. M. Ispirli, “Simulation of the composite electric field on 170 kV disconnector using the finite-element method,” Electrica, vol. 24, no. 1, pp. 87–95, 2024.
  • [17] M. S. Seddik, J. Shazly and M. B. Eteiba, “Thermal analysis of power transformer using 2D and 3D finite element method,” Energies, vol. 17, no. 13, 2024, Art. no. 3203.
  • [18] M. A. Tsili, E. I. Amoiralis, A. G. Kladas and A. T. Souflaris, “Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model,” International Journal of Thermal Sciences, vol. 53, pp. 188–201, 2012. [19] High-Voltage Test Techniques- Part 1: General Definitions and Test Requirements, “IEC 60060-1:2010-,” Geneva, Switzerland, 2010. [Online]. Available: https://cdn.standards.iteh.ai/samples/14599/5b8e92914b8b41c1a2d22e6ea9fbabb3/IEC-60060-1-2010.pdf. [20] X. Meng, X. Li and T. Lu, “Statistical properties of corona current pulses in rod-plane air gap under AC-DC composite voltages,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 31, no. 1, pp. 212–221, 2024. [21] J. Jiang, W. Liu, Z. Li, Z. Shen and C. Zhang, “Partial discharge characteristics of aviation cables under composite voltages,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 31, no. 3, pp. 1193–1200, 2024. [22] S. Dedeoglu and A. Merev, “Realization of the reference composite voltage waveforms for lightning impulse (LI) voltages superimposed over DC and AC signals,” Mapan - Journal of Metrology Society of India, vol. 38, no. 3, pp. 597–606, 2023.
  • [23] M. M. Ispirli, Ö. Kalenderli, F. Seifert, M. Rock and B. Oral, “Investigation of impact of DC component on breakdown characteristics for different electric fields under composite AC & DC voltage,” High Voltage, vol. 7, no. 2, pp. 279–287, 2022.
  • [24] P. Sun, W. Sima, M. Yang, X. Lan and J. Wu, “Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 6, pp. 3582–3591, 2015.
  • [25] P. K. Samaras, E. T. Staikos, Z. G. Datsios, P. N. Mikropoulos, T. E. Tsovilis and N. D. Kokkinos, “Evaluation of the electric stress on an insulating down-conductor caused by lightning strikes through ATP-EMTP simulations,” IEEE Transactions on Industry Applications, vol. 60, no. 6, pp. 8353-8361, 2024.
  • [26] High-Voltage Test Techniques - Part 2: Measuring Systems, IEC 60060-2:2010, Geneva, Switzerland, 2010. [Online]. Available: https://cdn.standards.iteh.ai/samples/15064/134aee6cd6844b35b2469fd5826964e4/IEC-60060-2-2010.pdf.
  • [27] High-Voltage Test Techniques - Part 3: Definitions and Requirements for on-Site Testing, IEC 60060-3:2006, Geneva, 2006. [Online]. Available: https://cdn.standards.iteh.ai/samples/1000002023/8302a36ea68d469e988a72f714da3426/IEC-60060-3-2006.pdf.
  • [28] Ö. Kalenderli, E. Ok and S. Çelebi, “14 kV luk Darbe Gerilimi Üreteci Tasarımı ve Yapımı,” 2009. [Online]. Available: https://www.emo.org.tr/ekler/01cfd14f121f19b_ek.pdf.
  • [29] F. Aboura and O. Touhami, “Integration of the hysteresis in models of asymmetric three-phase transformer: Finite-element and dynamic electromagnetic models,” IET Electric Power Applications, vol. 10, no. 7, pp. 614–622, 2016.

Kompozit Gerilim Koşulları Altında 34,5 kV’ luk Transformatörün Elektrik ve Manyetik Alan Analizi: COMSOL Multiphysics Simülasyonu

Year 2025, Volume: 13 Issue: 3, 1161 - 1179, 31.07.2025
https://doi.org/10.29130/dubited.1624167

Abstract

Transformatörler, elektrik güç sistemlerinin temel bileşenlerinden biri olup enerji dönüşümünde kritik bir rol oynamaktadır. Ancak, aşırı gerilimler ve çevresel zorlanmalar, transformatörlerin yalıtım sistemlerinde arızalara yol açabilmektedir. Bu arızalar, yalıtım sistemlerinin ömrünü kısaltarak güvenilirliği olumsuz yönde etkileyebilir ve enerji iletiminde ciddi kayıplara yol açabilir. Ayrıca, ani arızalar ekonomik maliyetleri artırırken, güç sistemlerinin genel verimliliğini de düşürmektedir. Bu sebeple, çalışma kapsamında 3 MVA gücünde, 34,5 kV’luk kuru tip bir dağıtım transformatörü, COMSOL Multiphysics yazılımı kullanılarak modellenmiştir. IEC 60076-3 ve IEC 60060-1:2010 standartları temel alınarak, modellenen transformatöre genliği 170 kV olan yıldırım darbe gerilimi ile nominal işletme gerilimi eş zamanlı olarak uygulanmıştır. Karma gerilim koşulları altında elektrik alan şiddeti, manyetik akı yoğunluğu ve elektrik potansiyeli dağılımları analiz edilmiştir. Bu koşullar altında yalıtım sistemlerinde meydana gelen elektriksel zorlanmanın yalıtım dayanımı üzerindeki etkileri ayrıntılı olarak ele alınmıştır. Elde edilen sonuçlar, karma gerilim işareti bileşenlerinin transformatörün yalıtım performansı üzerindeki olumsuz etkilerini ve potansiyel iyileştirme alanlarını ortaya koymaktadır.

References

  • [1] J. Sun, Q. Yang, P. Su, S. Wu, S. Chen and L. He, “Diagnosis of winding fault in three-winding transformer using lightning impulse voltage,” Electric Power Systems Research, vol. 175, 2019, Art. no. 105898.
  • [2] X. Zhang, H. Wang, R. Guo, Z. Zhang, J. Li and X. Han, “Fault diagnosis technologies for power transformers during the on-site inductive oscillating switching impulse voltage withstand test,” IET Generation, Transmission and Distribution, vol. 16, no. 19, pp. 3894–3905, 2022.
  • [3] M. Florkowski, J. Furgal, M. Kuniewski and P. Pajak, “Comparison of transformer winding responses to standard lightning impulses and operational overvoltages,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 3, pp. 965–974, 2018.
  • [4] E. Tunç and M. Fidan, "Residual Voltage Tests of 4.5 kV Metal Oxide Surge Arrester," in 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Türkiye, 2023, pp. 1-5.
  • [5] R. R. Annadi and C. S. Patsa, “Estimation of switching surge flashover rate of 1200-kV UHVAC transmission line considering switching overvoltage waveshape,” Electrical Engineering, vol. 102, no. 2, pp. 953–966, 2020.
  • [6] Y. Zheng, B. Yu, H. Xu, D. Yan, X. Li and W. He, “Novel method for restraining 35 kV shunt reactor switching overvoltage – phase controlled breaker,” The Journal of Engineering, vol. 2019, no. 16, pp. 742–747, 2019.
  • [7] E. Tunc and M. Fidan, “Experimental and simulation study of pulse current generator,” Electric Power Components and Systems, vol. 52, no. 8, pp. 1316–1327, 2024.
  • [8] L. F. Freitas-Gutierres et al., “Framework for decision-making in preventive maintenance: Electric field analysis and partial discharge diagnosis of high-voltage insulators,” Electric Power Systems Research, vol. 233, 2024, Art. no. 110447.
  • [9] M. Fidan and H. İsmailoǧlu, “CuSO45H2O sıvı direncin harmonikli ve harmoniksiz yüksek gerilim altında kismi boşalma davranışları,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 32, no. 1, pp. 315–323, 2017.
  • [10] Y. Özüpak, “Ansys@maxwell kullanılarak transformatörlerin ani akımlar durumunda meydana gelen elektrik alan analizlerinin gerçekleştirilmesi,” Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 14, pp. 105–116, 2021.
  • [11] Power Transformers - Part 3: Insulation Levels, Dielectric Tests and External Clearances in Air, IEC 60076-3:1980, Geneva, Switzerland, 1980. [Online]. Available: https://forhandsvis.standard.no/product/1890428/en.
  • [12] Y. Özüpak and E. Aslan, “Using artificial neural networks to improve the efficiency of transformers used in wireless power transmission systems for different coil positions,” Revue Roumaine des Sciences Techniques, Série Électrotechnique et Énergétique, vol. 69, pp. 195–200, 2024.
  • [13] Y. Özüpak and M. S. Mamiş, “Analysis of electromagnetic and loss effects of sub-harmonics on transformers by Finite Element Method,” Sādhanā, vol. 45, 2020, Art. no. 226.
  • [14] R. Hu, Z. Zhang, S. Wang, Y. Lu, L. Liu and S. Zhu, “Electric field optimization of cast resin dry-type transformer under lightning impulse,” in Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP), IEEE, Richland, WA, Washington, USA, 2019, pp. 556-559.
  • [15] M. M. Ispirli, B. Oral and Ö. Kalenderli, “Electric field analysis of 66 kV and 110 kV SiR insulators under combined AC–DC voltages,” Energy Reports, vol. 8, pp. 361–368, 2022.
  • [16] M. Yazici, Ö. Kalenderli and M. M. Ispirli, “Simulation of the composite electric field on 170 kV disconnector using the finite-element method,” Electrica, vol. 24, no. 1, pp. 87–95, 2024.
  • [17] M. S. Seddik, J. Shazly and M. B. Eteiba, “Thermal analysis of power transformer using 2D and 3D finite element method,” Energies, vol. 17, no. 13, 2024, Art. no. 3203.
  • [18] M. A. Tsili, E. I. Amoiralis, A. G. Kladas and A. T. Souflaris, “Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model,” International Journal of Thermal Sciences, vol. 53, pp. 188–201, 2012. [19] High-Voltage Test Techniques- Part 1: General Definitions and Test Requirements, “IEC 60060-1:2010-,” Geneva, Switzerland, 2010. [Online]. Available: https://cdn.standards.iteh.ai/samples/14599/5b8e92914b8b41c1a2d22e6ea9fbabb3/IEC-60060-1-2010.pdf. [20] X. Meng, X. Li and T. Lu, “Statistical properties of corona current pulses in rod-plane air gap under AC-DC composite voltages,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 31, no. 1, pp. 212–221, 2024. [21] J. Jiang, W. Liu, Z. Li, Z. Shen and C. Zhang, “Partial discharge characteristics of aviation cables under composite voltages,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 31, no. 3, pp. 1193–1200, 2024. [22] S. Dedeoglu and A. Merev, “Realization of the reference composite voltage waveforms for lightning impulse (LI) voltages superimposed over DC and AC signals,” Mapan - Journal of Metrology Society of India, vol. 38, no. 3, pp. 597–606, 2023.
  • [23] M. M. Ispirli, Ö. Kalenderli, F. Seifert, M. Rock and B. Oral, “Investigation of impact of DC component on breakdown characteristics for different electric fields under composite AC & DC voltage,” High Voltage, vol. 7, no. 2, pp. 279–287, 2022.
  • [24] P. Sun, W. Sima, M. Yang, X. Lan and J. Wu, “Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 6, pp. 3582–3591, 2015.
  • [25] P. K. Samaras, E. T. Staikos, Z. G. Datsios, P. N. Mikropoulos, T. E. Tsovilis and N. D. Kokkinos, “Evaluation of the electric stress on an insulating down-conductor caused by lightning strikes through ATP-EMTP simulations,” IEEE Transactions on Industry Applications, vol. 60, no. 6, pp. 8353-8361, 2024.
  • [26] High-Voltage Test Techniques - Part 2: Measuring Systems, IEC 60060-2:2010, Geneva, Switzerland, 2010. [Online]. Available: https://cdn.standards.iteh.ai/samples/15064/134aee6cd6844b35b2469fd5826964e4/IEC-60060-2-2010.pdf.
  • [27] High-Voltage Test Techniques - Part 3: Definitions and Requirements for on-Site Testing, IEC 60060-3:2006, Geneva, 2006. [Online]. Available: https://cdn.standards.iteh.ai/samples/1000002023/8302a36ea68d469e988a72f714da3426/IEC-60060-3-2006.pdf.
  • [28] Ö. Kalenderli, E. Ok and S. Çelebi, “14 kV luk Darbe Gerilimi Üreteci Tasarımı ve Yapımı,” 2009. [Online]. Available: https://www.emo.org.tr/ekler/01cfd14f121f19b_ek.pdf.
  • [29] F. Aboura and O. Touhami, “Integration of the hysteresis in models of asymmetric three-phase transformer: Finite-element and dynamic electromagnetic models,” IET Electric Power Applications, vol. 10, no. 7, pp. 614–622, 2016.
There are 25 citations in total.

Details

Primary Language English
Subjects High Voltage
Journal Section Research Article
Authors

Emre Tunç 0000-0002-1264-8571

Murat Fidan 0000-0003-2181-070X

Submission Date January 21, 2025
Acceptance Date May 7, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Tunç, E., & Fidan, M. (2025). Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation. Duzce University Journal of Science and Technology, 13(3), 1161-1179. https://doi.org/10.29130/dubited.1624167
AMA Tunç E, Fidan M. Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation. DUBİTED. July 2025;13(3):1161-1179. doi:10.29130/dubited.1624167
Chicago Tunç, Emre, and Murat Fidan. “Electric and Magnetic Field Analysis for a 34.5 KV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1161-79. https://doi.org/10.29130/dubited.1624167.
EndNote Tunç E, Fidan M (July 1, 2025) Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation. Duzce University Journal of Science and Technology 13 3 1161–1179.
IEEE E. Tunç and M. Fidan, “Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation”, DUBİTED, vol. 13, no. 3, pp. 1161–1179, 2025, doi: 10.29130/dubited.1624167.
ISNAD Tunç, Emre - Fidan, Murat. “Electric and Magnetic Field Analysis for a 34.5 KV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation”. Duzce University Journal of Science and Technology 13/3 (July2025), 1161-1179. https://doi.org/10.29130/dubited.1624167.
JAMA Tunç E, Fidan M. Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation. DUBİTED. 2025;13:1161–1179.
MLA Tunç, Emre and Murat Fidan. “Electric and Magnetic Field Analysis for a 34.5 KV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1161-79, doi:10.29130/dubited.1624167.
Vancouver Tunç E, Fidan M. Electric and Magnetic Field Analysis for a 34.5 kV Transformer Under Composite Voltage Conditions: COMSOL Multiphysics Simulation. DUBİTED. 2025;13(3):1161-79.