Research Article
BibTex RIS Cite

Removing Noise from Noisy Signal Data within Principal Component Analysis Framework

Year 2025, Volume: 13 Issue: 3, 1371 - 1384, 31.07.2025
https://doi.org/10.29130/dubited.1649830

Abstract

The separation of noise from data represents one of the fundamental problems in signal processing. Principal component analysis (PCA) is a multivariate statistical technique that is employed in all scientific disciplines for the identification of patterns in data and the compression of data by reducing the size without significant loss of information. This paper concerns the removal of noise from noisy sinusoidal data using PCA. The aim is to achieve this by focusing on the separation of noise from signal data without estimating the parameters of sinusoidal signals. To this end, a code was developed in the Mathematica programming language, with modifications of its algorithm then being assessed on data derived from a number of noisy signals. The effectiveness of PCA was assessed by using the mean square error (MSE) values in relation to the variation in signal-to-noise ratio (SNR). The simulation results obtained demonstrate the effectiveness of PCA in removing noise from noisy sinusoidal signals.

Ethical Statement

The conducted research is not related to either human or animal use.

Supporting Institution

This work is part of the project number 41895 that was submitted to Istanbul University's Scientific Projects Coordination Unit for support.

References

  • [1] Z. H. Michalopoulou and M. Picarelli, “Gibbs sampling for time-delay-and amplitude estimation in underwater acoustics,” The Journal of the Acoustical Society of America, vol. 117, pp. 799–808, 2005.
  • [2] R. H. Swendsen and J. S. Wang, “Replica Monte Carlo simulation of spin-glasses,” Physical Review Letters, vol. 57, pp. 2607-2609, 1986.
  • [3] R. J. Kenefic and A. H. Nuttall, “Maximum likelihood estimation of the parameters of tone using real discrete data”, IEEE Journal of Oceanic Engineering, vol. 12, no. 1, pp. 279–280, 1987.
  • [4] B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients,” IEEE Transactions on Signal Processing, vol. 42, no. 5, pp. 1264–1268, 1994.
  • [5] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of Complex Fourier Series,” Mathematics of Computation, vol. 19, pp. 297-301, 1965.
  • [6] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, “Equation of states calculations by fast computing machines,” Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.
  • [7] E. T Jaynes, “Bayesian spectrum and chirp analysis,” in Proceedings of the Third Workshop on Maximum Entropy and Bayesian Methods, C. Ray Smith and D. Reidel, Eds., Boston, pp. 1-37, 1987.
  • [8] G. L. Bretthorst, Lecture Notes in Statistics: Bayesian Spectrum Analysis and Parameter Estimation, vol. 48, USA: Springer-Verlag Berlin Heidelberg, 1997.
  • [9] M. Cevri and D. Üstündağ, “Bayesian recovery of sinusoids from noisy data with parallel tempering,” IET Signal Processing, vol 6, no. 7, pp. 673–683, 2012.
  • [10] L. Dou and R. J. W. Hodgson, “Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation I,” Inverse Problem, vol. 11, pp. 1069-1085, 1995.
  • [11] L. Dou, R. J. W. Hodgson, “Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation II,” Inverse Problem, vol. 11, pp. 121-137, 1995.
  • [12] C. Andrieu and A. Doucet, “Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC,” IEEE Transactions on Signal Processing, vol. 47, pp. 2667-2676, 1999.
  • [13] D. Üstündağ and M. Cevri, “Bayesian recovery of sinusoids with simulated annealing,” in Simulated Annealing - Advances, Applications and Hybridizations, M. S. G. Tsuzuki, Ed., Rijeka, Croatia: Intech Open, 2012. pp. 67-90.
  • [14] D. Üstündağ and M. Cevri, “Recovering sinusoids from noisy data using Bayesian inference withsimulated annealing,” Mathematical Computational Applications, vol. 16, no. 2, pp. 382-391, 2011.
  • [15] F. A. Almeida, G. F. Gomes, P. P. Balestrassi and G. Belinato, “Principal component analysis: an overview and applications in multivariate engineering problems,” Uncertainty Modeling: Fundamental Concepts and Models, 1th ed. A. B. Jorge, C. T. M. Anflor, G. F. Gomes and S. H. S. Carneiro, Eds., UnB, Brasilia, DF, Brazil, 2022, ch. 6, pp. 172-194.
  • [16] E. Elhaik, “Principal component analysis - based findings in population genetic studies are highly biased and must be reevaluated,” Scientific Reports, vol. 12, 2022, Art. no. 14683.
  • [17] D. Zhang, R. Dey and S. Lee, “Fast and robust ancestry prediction using principal component analysis,” Bioinformatics, vol. 36, pp. 3439-3446, 2020.
  • [18] X. Di and B.B. Biswal, “Principal component analysis reveals multiple consistent responses to naturalistic stimuli in children and adults,” Human Brain Mapping, vol. 43, pp. 3332-3345. 2022.
  • [19] A. Cartone and P. Postiglione, “Principal component analysis for geographical data: The role of spatial effects in the definition of composite indicators,” Spatial Economic Analysis, vol. 16, pp. 126-147, 2021.
  • [20] K. LIII. Pearson, “Onlines and planes of closest fit to systems of points in space,” Philosophical Magazine Series, vol. 6, pp. 559-572, 1901.
  • [21] H. Hotelling, “Analysis of acomplex of statistical variables into principal components,” Journal of Educational Psychology, vol. 25, pp. 417-441. 1933.
  • [22] W. Bounoua and A. Bakdi, “Fault detection and diagnosis of nonlinear dynamical processesthrough correlation dimension and fractal analysis based dynamic kernel PCA,” Chemical Engineering Science, vol. 229, 2021, Art. no. 116099.
  • [23] M. R. Mahmudi, M. R. Heydari, S. N. Qasem, A. Mosavi and S. S. Band, “Principal componentanalysis to study the relations between the spread rates of COVID-19 in high riskscountries. Alexandria Engineering Journal, vol. 60, no. 1, pp. 457-464, 2021.
  • [24] J. Song and B. ŞLi, “Nonlinear and additive principal component analysis for functional data,” Journal of Multivariate Analysis, vol. 181, 2021, Art. no. 104675.
  • [25] H. Huang and P. Antonelli, "Application of principal component analysis to high-resolution infrared measurement compression and retrieval," Journal of Applied Meteorology and Climatology, vol. 40, no. 3, 365-388, 2001.
  • [26] P. Antonelli P, H. E. Revercomb and L.A. Sromovsky, “A principal component noise filter for high spectral resolution infrared measurements,” Journal of Geophysical Research, vol. 109, 2004.
  • [27] D. C. Tobin, P. Antonelli, H. E. Revercomb, S. Dutcher, D. D. Turner, J. K. Taylor, R. O. Knuteson and K. Vinson, “Hyperspectral data noise characterization using principalcomponent analysis: application to atmospheric infrared sunder,” Journal of Applied Remote Sensing, vol. 3, no. 1, 2007, Art. no. 013515.
  • [28] F. Castells, P. Laguna and L. Sörnmo, A. Bollmann, and J. M. Roig, “Principal component analysis in ECG signal processing,” EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 1-21, 2007.
  • [29] O. Kükrer and E. A. İnce, “Frequency estimation of multiple complex sinusoids using noise suppressing predictive FIR filter,” Digital Signal Processing, vol. 143, 2023, Art. no. 104235.
  • [30] H. Karslı and D. Dondurur, “A mean-based filter to remove power line harmonic noise from seismic reflection data,'' Journal of Applied Geophysics, vol. 15, pp. 90-99, 2018.
  • [31] E. Shoshitaishvili, L. S. Sorenson and R. A. Johnson, "Data improvement by subtraction of high-amplitude harmonics from the 2D land vertical and multi-component seismic data acquired over the Cheyenne Belt in SE Wyoming," in 71st Annual International Meeting, SEG, Expanded Abstracts, San Antonio, Texas, USA, 2001, pp. 2021-2023.
  • [32] H. Wang, H.Zhang and Y. Chen, “Sinusoidal seismic noise suppression using randomized principal component analysis, ”IEEE Access,vol.8, pp.152131-152144, 2020.
  • [33] B.G. Tabachnick and L.S, Fidell, Using Multivariate Statistics, 4th ed., Needham Heights., MA: Pearson, USA, 2001.
  • [34] J. E. Jackson, A User’s Guide to Principal Components, New York, USA: John Wiley & Sons, 1991.
  • [35] I. T. Jolliffe, Principal Component Analysis, New York, USA: Springer Series in Statistics, Springer Verlag, 2002.
  • [36] F. Yang, S. Liu, E. Dobriban and D. P. Woodruff, “How to reduce dimension with PCA and random projections?” IEEE Transactions on Information Theory, vol. 67, no. 12, pp. 8154-8189, 2021.
  • [37] G. Li and Y. Qin, “An exploration of the application of principal component analysis in big data processing,” Applied Mathematics and Nonlinear Sciences, vol. 9, no. 1, pp. 1-24, 2024.
  • [38] R. G. Brereton, “Principal components analysis: standardisation,” Journal of Chemometrics, vol. 39, no. 1, pp. 1-4, 2025, Art. no. e3607.
  • [39] R. D. Ledesma, P.V. Mora and G. Macbeth, “The scree test and the number of factors: a dynamic graphics approach,” Spanish Journal of Psychology, vol. 18, pp.1-10, 2015, Art. no. e11.
  • [40] W. Min, J. Kim and O. Jo, “Denoising method for wireless communication signals based on convolutional auto encoder,” in 2025 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 2025, pp. 1080-1083.

Temel Bileşenler Analizi Çerçevesinde Gürültülü Sinyal Verilerinden Gürültünün Giderilmesi

Year 2025, Volume: 13 Issue: 3, 1371 - 1384, 31.07.2025
https://doi.org/10.29130/dubited.1649830

Abstract

Gürültünün verilerden ayrılması, sinyal işlemenin temel problemlerinden birini temsil etmektedir. Temel bileşen analizi (PCA), verilerdeki örüntülerin tanımlanması ve önemli bilgi kaybı olmadan boyutun küçültülerek verilerin sıkıştırılması için tüm bilimsel disiplinlerde kullanılan çok değişkenli bir istatistiksel tekniktir. Bu makale, PCA kullanarak gürültülü sinüzoidal verilerden gürültünün giderilmesi ile ilgilenmektedir. Amaç, sinüzoidal sinyallerin parametrelerini tahmin etmeden sinyal verilerinden gürültünün ayrılmasına odaklanarak bunu başarmaktır. Bunun için, Mathematica programlama dilinde bir kod geliştirilmiş ve algoritmasının modifikasyonları daha sonra bir dizi gürültülü sinyalden elde edilen veriler üzerinde değerlendirilmiştir. PCA'nın etkinliği, sinyal-gürültü oranındaki (SNR) değişime bağlı olarak ortalama kare hata (MSE) değerleri kullanılarak değerlendirilmiştir. Elde edilen simülasyon sonuçları, PCA'nın gürültülü sinüzoidal sinyallerdeki gürültüyü gidermedeki etkinliğini göstermektedir.

References

  • [1] Z. H. Michalopoulou and M. Picarelli, “Gibbs sampling for time-delay-and amplitude estimation in underwater acoustics,” The Journal of the Acoustical Society of America, vol. 117, pp. 799–808, 2005.
  • [2] R. H. Swendsen and J. S. Wang, “Replica Monte Carlo simulation of spin-glasses,” Physical Review Letters, vol. 57, pp. 2607-2609, 1986.
  • [3] R. J. Kenefic and A. H. Nuttall, “Maximum likelihood estimation of the parameters of tone using real discrete data”, IEEE Journal of Oceanic Engineering, vol. 12, no. 1, pp. 279–280, 1987.
  • [4] B. G. Quinn, “Estimating frequency by interpolation using Fourier coefficients,” IEEE Transactions on Signal Processing, vol. 42, no. 5, pp. 1264–1268, 1994.
  • [5] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of Complex Fourier Series,” Mathematics of Computation, vol. 19, pp. 297-301, 1965.
  • [6] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, “Equation of states calculations by fast computing machines,” Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.
  • [7] E. T Jaynes, “Bayesian spectrum and chirp analysis,” in Proceedings of the Third Workshop on Maximum Entropy and Bayesian Methods, C. Ray Smith and D. Reidel, Eds., Boston, pp. 1-37, 1987.
  • [8] G. L. Bretthorst, Lecture Notes in Statistics: Bayesian Spectrum Analysis and Parameter Estimation, vol. 48, USA: Springer-Verlag Berlin Heidelberg, 1997.
  • [9] M. Cevri and D. Üstündağ, “Bayesian recovery of sinusoids from noisy data with parallel tempering,” IET Signal Processing, vol 6, no. 7, pp. 673–683, 2012.
  • [10] L. Dou and R. J. W. Hodgson, “Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation I,” Inverse Problem, vol. 11, pp. 1069-1085, 1995.
  • [11] L. Dou, R. J. W. Hodgson, “Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation II,” Inverse Problem, vol. 11, pp. 121-137, 1995.
  • [12] C. Andrieu and A. Doucet, “Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC,” IEEE Transactions on Signal Processing, vol. 47, pp. 2667-2676, 1999.
  • [13] D. Üstündağ and M. Cevri, “Bayesian recovery of sinusoids with simulated annealing,” in Simulated Annealing - Advances, Applications and Hybridizations, M. S. G. Tsuzuki, Ed., Rijeka, Croatia: Intech Open, 2012. pp. 67-90.
  • [14] D. Üstündağ and M. Cevri, “Recovering sinusoids from noisy data using Bayesian inference withsimulated annealing,” Mathematical Computational Applications, vol. 16, no. 2, pp. 382-391, 2011.
  • [15] F. A. Almeida, G. F. Gomes, P. P. Balestrassi and G. Belinato, “Principal component analysis: an overview and applications in multivariate engineering problems,” Uncertainty Modeling: Fundamental Concepts and Models, 1th ed. A. B. Jorge, C. T. M. Anflor, G. F. Gomes and S. H. S. Carneiro, Eds., UnB, Brasilia, DF, Brazil, 2022, ch. 6, pp. 172-194.
  • [16] E. Elhaik, “Principal component analysis - based findings in population genetic studies are highly biased and must be reevaluated,” Scientific Reports, vol. 12, 2022, Art. no. 14683.
  • [17] D. Zhang, R. Dey and S. Lee, “Fast and robust ancestry prediction using principal component analysis,” Bioinformatics, vol. 36, pp. 3439-3446, 2020.
  • [18] X. Di and B.B. Biswal, “Principal component analysis reveals multiple consistent responses to naturalistic stimuli in children and adults,” Human Brain Mapping, vol. 43, pp. 3332-3345. 2022.
  • [19] A. Cartone and P. Postiglione, “Principal component analysis for geographical data: The role of spatial effects in the definition of composite indicators,” Spatial Economic Analysis, vol. 16, pp. 126-147, 2021.
  • [20] K. LIII. Pearson, “Onlines and planes of closest fit to systems of points in space,” Philosophical Magazine Series, vol. 6, pp. 559-572, 1901.
  • [21] H. Hotelling, “Analysis of acomplex of statistical variables into principal components,” Journal of Educational Psychology, vol. 25, pp. 417-441. 1933.
  • [22] W. Bounoua and A. Bakdi, “Fault detection and diagnosis of nonlinear dynamical processesthrough correlation dimension and fractal analysis based dynamic kernel PCA,” Chemical Engineering Science, vol. 229, 2021, Art. no. 116099.
  • [23] M. R. Mahmudi, M. R. Heydari, S. N. Qasem, A. Mosavi and S. S. Band, “Principal componentanalysis to study the relations between the spread rates of COVID-19 in high riskscountries. Alexandria Engineering Journal, vol. 60, no. 1, pp. 457-464, 2021.
  • [24] J. Song and B. ŞLi, “Nonlinear and additive principal component analysis for functional data,” Journal of Multivariate Analysis, vol. 181, 2021, Art. no. 104675.
  • [25] H. Huang and P. Antonelli, "Application of principal component analysis to high-resolution infrared measurement compression and retrieval," Journal of Applied Meteorology and Climatology, vol. 40, no. 3, 365-388, 2001.
  • [26] P. Antonelli P, H. E. Revercomb and L.A. Sromovsky, “A principal component noise filter for high spectral resolution infrared measurements,” Journal of Geophysical Research, vol. 109, 2004.
  • [27] D. C. Tobin, P. Antonelli, H. E. Revercomb, S. Dutcher, D. D. Turner, J. K. Taylor, R. O. Knuteson and K. Vinson, “Hyperspectral data noise characterization using principalcomponent analysis: application to atmospheric infrared sunder,” Journal of Applied Remote Sensing, vol. 3, no. 1, 2007, Art. no. 013515.
  • [28] F. Castells, P. Laguna and L. Sörnmo, A. Bollmann, and J. M. Roig, “Principal component analysis in ECG signal processing,” EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 1-21, 2007.
  • [29] O. Kükrer and E. A. İnce, “Frequency estimation of multiple complex sinusoids using noise suppressing predictive FIR filter,” Digital Signal Processing, vol. 143, 2023, Art. no. 104235.
  • [30] H. Karslı and D. Dondurur, “A mean-based filter to remove power line harmonic noise from seismic reflection data,'' Journal of Applied Geophysics, vol. 15, pp. 90-99, 2018.
  • [31] E. Shoshitaishvili, L. S. Sorenson and R. A. Johnson, "Data improvement by subtraction of high-amplitude harmonics from the 2D land vertical and multi-component seismic data acquired over the Cheyenne Belt in SE Wyoming," in 71st Annual International Meeting, SEG, Expanded Abstracts, San Antonio, Texas, USA, 2001, pp. 2021-2023.
  • [32] H. Wang, H.Zhang and Y. Chen, “Sinusoidal seismic noise suppression using randomized principal component analysis, ”IEEE Access,vol.8, pp.152131-152144, 2020.
  • [33] B.G. Tabachnick and L.S, Fidell, Using Multivariate Statistics, 4th ed., Needham Heights., MA: Pearson, USA, 2001.
  • [34] J. E. Jackson, A User’s Guide to Principal Components, New York, USA: John Wiley & Sons, 1991.
  • [35] I. T. Jolliffe, Principal Component Analysis, New York, USA: Springer Series in Statistics, Springer Verlag, 2002.
  • [36] F. Yang, S. Liu, E. Dobriban and D. P. Woodruff, “How to reduce dimension with PCA and random projections?” IEEE Transactions on Information Theory, vol. 67, no. 12, pp. 8154-8189, 2021.
  • [37] G. Li and Y. Qin, “An exploration of the application of principal component analysis in big data processing,” Applied Mathematics and Nonlinear Sciences, vol. 9, no. 1, pp. 1-24, 2024.
  • [38] R. G. Brereton, “Principal components analysis: standardisation,” Journal of Chemometrics, vol. 39, no. 1, pp. 1-4, 2025, Art. no. e3607.
  • [39] R. D. Ledesma, P.V. Mora and G. Macbeth, “The scree test and the number of factors: a dynamic graphics approach,” Spanish Journal of Psychology, vol. 18, pp.1-10, 2015, Art. no. e11.
  • [40] W. Min, J. Kim and O. Jo, “Denoising method for wireless communication signals based on convolutional auto encoder,” in 2025 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 2025, pp. 1080-1083.
There are 40 citations in total.

Details

Primary Language English
Subjects Classification Algorithms, Electrical Engineering (Other)
Journal Section Research Article
Authors

Mehmet Cevri 0000-0002-7388-4412

Submission Date March 2, 2025
Acceptance Date June 12, 2025
Publication Date July 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Cevri, M. (2025). Removing Noise from Noisy Signal Data within Principal Component Analysis Framework. Duzce University Journal of Science and Technology, 13(3), 1371-1384. https://doi.org/10.29130/dubited.1649830
AMA Cevri M. Removing Noise from Noisy Signal Data within Principal Component Analysis Framework. DUBİTED. July 2025;13(3):1371-1384. doi:10.29130/dubited.1649830
Chicago Cevri, Mehmet. “Removing Noise from Noisy Signal Data Within Principal Component Analysis Framework”. Duzce University Journal of Science and Technology 13, no. 3 (July 2025): 1371-84. https://doi.org/10.29130/dubited.1649830.
EndNote Cevri M (July 1, 2025) Removing Noise from Noisy Signal Data within Principal Component Analysis Framework. Duzce University Journal of Science and Technology 13 3 1371–1384.
IEEE M. Cevri, “Removing Noise from Noisy Signal Data within Principal Component Analysis Framework”, DUBİTED, vol. 13, no. 3, pp. 1371–1384, 2025, doi: 10.29130/dubited.1649830.
ISNAD Cevri, Mehmet. “Removing Noise from Noisy Signal Data Within Principal Component Analysis Framework”. Duzce University Journal of Science and Technology 13/3 (July2025), 1371-1384. https://doi.org/10.29130/dubited.1649830.
JAMA Cevri M. Removing Noise from Noisy Signal Data within Principal Component Analysis Framework. DUBİTED. 2025;13:1371–1384.
MLA Cevri, Mehmet. “Removing Noise from Noisy Signal Data Within Principal Component Analysis Framework”. Duzce University Journal of Science and Technology, vol. 13, no. 3, 2025, pp. 1371-84, doi:10.29130/dubited.1649830.
Vancouver Cevri M. Removing Noise from Noisy Signal Data within Principal Component Analysis Framework. DUBİTED. 2025;13(3):1371-84.