Review
BibTex RIS Cite

Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics

Year 2025, Volume: 13 Issue: 4, 1643 - 1660, 30.10.2025
https://doi.org/10.29130/dubited.1686889

Abstract

The advancement of Additive Manufacturing (AM) technologies, particularly Selective Laser Melting (SLM), has significantly influenced the development of orthopedic, dental, and spinal implants. This paper provides a comprehensive review of the role of SLM in enhancing the properties of implants, including biocompatibility, wear, fatigue and corrosion resistance. SLM offers significant advantages such as customization, design flexibility, and the ability to produce intricate geometries with precise porosity, which plays a critical role in osseointegration and bone regeneration. This paper examines various materials used in implant manufacturing, such as titanium alloys and Co-Cr-Mo alloys, and discusses their mechanical and tribological properties, emphasizing their suitability for use in load-bearing implants. Furthermore, the impact of surface texture, roughness, and porosity on the performance and longevity of implants is explored, highlighting how these factors influence mechanical properties, cell attachment, and overall integration with human tissue. In summary, SLM has emerged as a powerful method for producing orthopedic and dental implants with tailored mechanical properties, improved bioactivity, and enhanced biocompatibility, making it a promising tool for the future of implantable medical devices. In this study, 2D drawings and suggestions for further research have been provided to future researchers in various sections.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Project Number

-

Thanks

The authors of this article express their gratitude to all authors who used their articles and hope that this article can play a useful role in the increasing the efficiency SLM technology

References

  • Abate, K. M., Nazir, A., & Jeng, J. Y. (2021). Design, optimization, and selective laser melting of vin tiles cellular structure-based hip implant. The International Journal of Advanced Manufacturing Technology, 112(7), 2037-2050. https://doi.org/10.1007/s00170-020-06323-5
  • Bartolomeu, F., Costa, M. M., Alves, N., Miranda, G., & Silva, F. S. (2020a). Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants. Optics and Lasers in Engineering, 134, Article 106208. https://doi.org/10.1016/j.optlaseng.2020.106208
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., & Silva, F. S. (2020b). Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Materials Science and Engineering: C, 107, Article 110342. https://doi.org/10.1016/j.msec.2019.110342
  • Bram, M., Schiefer, H., Bogdanski, D., Köller, M., Buchkremer, H. P., & Stöver, D. (2006). Implant surgery: How bone bonds to PM titanium. Metal Powder Report, 61(2), 26-31. https://doi.org/10.1016/S0026-0657(06)70603-8
  • Chen, C., Hao, Y., Bai, X., Ni, J., Chung, S. M., Liu, F., & Lee, I. S. (2019). 3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model. Materials & Design, 175, Article 107824. https://doi.org/10.1016/j.matdes.2019.107824
  • Cheng, K. J., Liu, Y. F., Wang, J. H., Wang, R., Xia, J., Xu, X., JiangX. F., & Dong, X. T. (2022). 3D-printed porous condylar prosthesis for temporomandibular joint replacement: Design and biomechanical analysis. Technology and Health Care, 30(4), 1017-1030. https://doi.org/10.3233/THC-213534
  • Cosma, S. C., Matei, S., Balc, N., & Leordean, D. (2014). Dental implants with lattice structure fabricated by selective laser melting. International Virtual Research Conference in Technical Disciplines, Slovakia, 2(1), 18-24.
  • de Souza Soares, F. M., Barbosa, D. M., Corado, H. P. R., de Carvalho Santana, A. I., & Elias, C. N. (2022). Surface morphology, roughness, and corrosion resistance of dental implants produced by additive manufacturing. Journal of Materials Research and Technology, 21, 3844-3855. https://doi.org/10.1016/j.jmrt.2022.10.114
  • Dong, X., Zhou, Y., Sun, Q., Qu, Y., Shi, H., Liu, W., Peng, H., Zhang, B., Xu, S., Yan, J., & Li, N. (2020). Fatigue behavior of biomedical Co–Cr–Mo–W alloy fabricated by selective laser melting. Materials Science and Engineering: A, 795, Article 140000. https://doi.org/10.1016/j.msea.2020.140000
  • Elsayed, M., Ghazy, M., Youssef, Y., & Essa, K. (2019). Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyping Journal, 25(3), 433-447. https://doi.org/10.1108/RPJ-05-2018-0112
  • Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341-344. https://doi.org/10.1016/j.scriptamat.2006.11.010
  • Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., & Nakamura, T. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 7(5), 2327-2336. https://doi.org/10.1016/j.actbio.2011.01.037
  • Ghosh, S., Abanteriba, S., Wong, S., & Houshyar, S. (2018). Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting. Journal of the Mechanical Behavior of Biomedical Materials, 87, 312-324. https://doi.org/10.1016/j.jmbbm.2018.07.031
  • Götz, H. E., Müller, M., Emmel, A., Holzwarth, U., Erben, R. G., & Stangl, R. (2004). Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials, 25(18), 4057-4064. https://doi.org/10.1016/j.biomaterials.2003.11.002
  • Han, W., Fang, S., Zhong, Q., & Qi, S. (2022). Influence of dental implant surface modifications on osseointegration and biofilm attachment. Coatings, 12(11), Article 1654. https://doi.org/10.3390/coatings12111654
  • Hyzy, S. L., Cheng, A., Cohen, D. J., Yatzkaier, G., Whitehead, A. J., Clohessy, R. M., Gittens, R. A., Boyan, B. D., & Schwartz, Z. (2016). Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti–6Al–4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. Journal of Biomedical Materials Research Part A, 104(8), 2086-2098. https://doi.org/10.1002/jbm.a.35739
  • Ji, F., Zhang, C., & Chen, X. (2018). Structure optimization of porous dental implant based on 3D printing. IOP Conference Series: Materials Science and Engineering, 324(1), Article 012060. https://doi.org/10.1088/1757-899X/324/1/0120
  • Kozakiewicz, M., Gmyrek, T., Zajdel, R., & Konieczny, B. (2021). Custom-made zirconium dioxide implants for craniofacial bone reconstruction. Materials, 14(4), Article 840. https://doi.org/10.3390/ma14040840
  • Kumar, P., Sawant, M. S., Jain, N. K., & Gupta, S. (2022). Study of mechanical characteristics of additively manufactured Co-Cr-Mo-2/4/6Ti alloys for knee implant material. CIRP Journal of Manufacturing Science and Technology, 39, 261-275. https://doi.org/10.1016/j.cirpj.2022.08.015
  • Leordean, D., Dudescu, C., Marcu, T., Berce, P., & Balc, N. (2015a). Customized implants with specific properties, made by selective laser melting. Rapid Prototyping Journal, 21(1), 98-104. https://doi.org/10.1108/RPJ-11-2012-0107
  • Leordean, D., Radu, S. A., Frățilă, D., & Berce, P. (2015b). Studies on design of customized orthopedic endoprostheses of titanium alloy manufactured by SLM. The International Journal of Advanced Manufacturing Technology, 79(5), 905-920. https://doi.org/10.1007/s00170-015-6873-0
  • Lerebours, A., Demangel, C., Dembinski, L., Bouvier, S., Rassineux, A., & Egles, C. (2020). Effect of the residual porosity of CoCrMo bearing parts produced by additive manufacturing on wear of polyethylene. Biotribology, 23, Article 100138. https://doi.org/10.1016/j.biotri.2020.100138
  • Levy, H. A., Karamian, B. A., Yalla, G. R., Canseco, J. A., Vaccaro, A. R., & Kepler, C. K. (2023). Impact of surface roughness and bulk porosity on spinal interbody implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111(2), 478-489. https://doi.org/10.1002/jbm.b.35161
  • Lin, C. Y., Wirtz, T., LaMarca, F., & Hollister, S. J. (2007). Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Materials Research Part A, 83A(2), 272-279. https://doi.org/10.1002/jbm.a.31231
  • Liu, Y., Rath, B., Tingart, M., & Eschweiler, J. (2020). Role of implants surface modification in osseointegration: A systematic review. Journal of Biomedical Materials Research Part A, 108(3), 470-484. https://doi.org/10.1002/jbm.a.36829
  • Lu, Y., Ren, L., Xu, X., Yang, Y., Wu, S., Luo, J., Y, M., Liud. L., Zhuanged D., Yang K.& Lin, J. (2018). Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 81, 130-141. https://doi.org/10.1016/j.jmbbm.2018.02.026
  • Luo, L., Li, J., Lin, Z., Cheng, X., Wang, J., Wang, Y., & Huang, W. (2023). Anisotropic biomimetic trabecular porous three-dimensional-printed Ti-6Al-4V cage for lumbar interbody fusion. Materials & Design, 233, Article 112254. https://doi.org/10.1016/j.matdes.2023.112254
  • Mommaerts, M. Y., Depauw, P. R., & Nout, E. (2020). Ceramic 3D-printed titanium cranioplasty. Craniomaxillofacial Trauma & Reconstruction, 13(4), 329-333. https://doi.org/10.1177/1943387520927916
  • Mondal, P., Das, A., Wazeer, A., & Karmakar, A. (2022). Biomedical porous scaffold fabrication using additive manufacturing technique: porosity, surface roughness and process parameters optimization. International Journal of Lightweight Materials and Manufacture, 5(3), 384-396. https://doi.org/10.1016/j.ijlmm.2022.04.005
  • Mróz, A. B., Lapaj, L., Wisniewski, T., Skalski, K., & Leshchynsky, V. (2017). Friction and wear of the intervertebral disc endoprosthesis manufactured with use of selective laser melting process. Rapid Prototyping Journal, 23(6), 1032-1042. https://doi.org/10.1108/RPJ-11-2015-0171
  • Murchio, S. (2023). Hierarchical multifunctional cellular materials for implants with improved fatigue resistance and osteointegration [Doctoral dissertation, Università degli Studi di Trento]. https://doi.org/10.15168/11572_379289
  • Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., Hernandez, DH.,& Wicker, Hasır, R.B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20-32. https://doi.org/10.1016/j.jmbbm.2008.05.004
  • Ni, J., Liu, F., Yang, G., Lee, G. H., Chung, S. M., Lee, I. S., & Chen, C. (2021). 3D-printed Ti6Al4V femoral component of knee: Improvements in wear and biological properties by AIP TiN and TiCrN coating. Journal of Materials Research and Technology, 14, 2322-2332. https://doi.org/10.1016/j.jmrt.2021.07.143
  • Pan, C. T., Lin, C. H., Huang, Y. S., Yang, T. L., Chen, S. Y., Ou, C. H., Chen, L. Y., Huang, J. C., Jang, J. S. C., Lin, H. K., & Lin, D. Y. (2017). Design of interbody fusion cages of Ti6Al4V with gradient porosity using a selective laser melting process for spinal fusion arthroplasty. Journal of Laser Micro/Nanoengineering, 12(1), 34-44. https://doi.org/10.2961/jlmn.2017.01.0007
  • Peng, W., Xu, L., You, J., Fang, L., & Zhang, Q. (2016). Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model. Biomedical Engineering Online, 15(1), 85. https://doi.org/10.1186/s12938-016-0207-9
  • Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., & Masaylo, D. (2016a). Producing hip implants of titanium alloys by additive manufacturing. International Journal of Bioprinting, 2(2), 78-84. https://doi.org/10.18063/IJB.2016.02.004
  • Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., & Masaylo, D. (2016b). Additive manufacturing of individual implants from titanium alloy. In Proceedings of the 25th Anniversary International Conference on Metallurgy and Materials (METAL 2016) (pp. 1504-1508).
  • Przekora, A., Kazimierczak, P., Wojcik, M., Chodorski, E., & Kropiwnicki, J. (2022). Mesh Ti6Al4V material manufactured by selective laser melting (SLM) as a promising intervertebral fusion cage. International Journal of Molecular Sciences, 23(7), Article 3985. https://doi.org/10.3390/ijms23073985
  • Revilla-León, M., Husain, N. A. H., Methani, M. M., & Özcan, M. (2021). Chemical composition, surface roughness, and ceramic bond strength of additively manufactured cobalt-chromium dental alloys. The Journal of Prosthetic Dentistry, 125(5), 825-831. https://doi.org/10.1016/j.prosdent.2020.03.012
  • Rezayat, M., Ashkani, O., & Fadaei, R. (2024). Investigating surface integrity and mechanical behavior of selective laser melting for dental implants. Applied Research, 3(4), Article e202300126. https://doi.org/10.1002/appl.202300126
  • Roudnicka, M., Bigas, J., Molnarova, O., Palousek, D., & Vojtech, D. (2021). Different response of cast and 3D-printed Co-Cr-Mo alloy to heat treatment: A thorough microstructure characterization. Metals, 11(5), Article 687. https://doi.org/10.3390/met11050687
  • Shaoki, A., Xu, J. Y., Sun, H., Chen, X. S., Ouyang, J., Zhuang, X. M., & Deng, F. L. (2016). Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting. Biofabrication, 8(4), Article 045014. https://doi.org/10.1088/1758-5090/8/4/045014
  • Sharma, N., Ostas, D., Rotar, H., Brantner, P., & Thieringer, F. M. (2021). Design and additive manufacturing of a biomimetic customized cranial implant based on voronoi diagram. Frontiers in Physiology, 12, Article 647923. https://doi.org/10.3389/fphys.2021.647923
  • Sikavitsas, V. I., Temenoff, J. S., & Mikos, A. G. (2001). Biomaterials and bone mechanotransduction. Biomaterials, 22(19), 2581-2593. https://doi.org/10.1016/S0142-9612(01)00002-3
  • Singla, A. K., Banerjee, M., Sharma, A., Singh, J., Bansal, A., Gupta, M. K., Khanna, N., Shahi, A. S., & Goyal, D. K. (2021). Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments. Journal of Manufacturing Processes, 64, 161-187. https://doi.org/10.1016/j.jmapro.2021.01.009
  • Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., Matsushita, T., Kokubo, T., & Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering: C, 59, 690-701. https://doi.org/10.1016/j.msec.2015.10.069
  • Tsuang, F. Y., Li, M. J., Chu, P. H., Tsou, N. T., & Sun, J. S. (2023). Mechanical performance of porous biomimetic intervertebral body fusion devices: an in vitro biomechanical study. Journal of Orthopaedic Surgery and Research, 18(1), Article 71. https://doi.org/10.1186/s13018-023-03556-4
  • Van Hooreweder, B., Apers, Y., Lietaert, K., & Kruth, J. P. (2017). Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomaterialia, 47, 193-202. https://doi.org/10.1016/j.actbio.2016.10.005
  • Vilhena, L. M., Shumayal, A., Ramalho, A., & Ferreira, J. A. M. (2020). Tribocorrosion behaviour of Ti6Al4V produced by selective laser melting for dental implants. Lubricants, 8(2), Article 22. https://doi.org/10.3390/lubricants8020022
  • Wally, Z. J., Haque, A. M., Feteira, A., Claeyssens, F., Goodall, R., & Reilly, G. C. (2019). Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 90, 20-29. https://doi.org/10.1016/j.jmbbm.2018.08.047
  • Wang, M., Wu, Y., Lu, S., Chen, T., Zhao, Y., Chen, H., & Tang, Z. (2016). Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design. Progress in Natural Science: Materials International, 26(6), 671-677. https://doi.org/10.1016/j.pnsc.2016.12.006
  • Wu, S., Liu, X., Yeung, K. W., Liu, C., & Yang, X. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, 1-36. https://doi.org/10.1016/j.mser.2014.04.001
  • Wysocki, B., Maj, P., Sitek, R., Buhagiar, J., Kurzydłowski, K. J., & Święszkowski, W. (2017). Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Applied Sciences, 7(7), Article 657. https://doi.org/10.3390/app7070657
  • Xiang, S., Yuan, Y., Zhang, C., & Chen, J. (2022). Effects of process parameters on the corrosion resistance and biocompatibility of Ti6Al4V parts fabricated by selective laser melting. ACS Omega, 7(7), 5954-5961. https://doi.org/10.1021/acsomega.1c06246
  • Xiong, Y., Gao, R., Zhang, H., & Li, X. (2019). Design and fabrication of a novel porous titanium dental implant with micro/nano surface. International Journal of Applied Electromagnetics and Mechanics, 59(3), 1097-1102. https://doi.org/10.3233/JAE-171166
  • Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61-73. https://doi.org/10.1016/j.jmbbm.2015.06.024
  • Yang, H. J., & Oh, J. H. (2022). Reconstruction of mandibular contour defect using patient-specific titanium implant manufactured by selective laser melting method. Journal of Craniofacial Surgery, 33(7), 2055-2058. https://doi.org/10.1097/SCS.0000000000008513
  • Yoo, D. (2013). New paradigms in hierarchical porous scaffold design for tissue engineering. Materials Science and Engineering: C, 33(3), 1759-1772. https://doi.org/10.1016/j.msec.2012.12.092
  • Zaharin, H. A., Abdul Rani, A. M., Azam, F. I., Ginta, T. L., Sallih, N., Ahmad, A., Yunus, N. A., & Zulkifli, T. Z. A. (2018). Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds. Materials, 11(12), Article 2402. https://doi.org/10.3390/ma11122402
  • Zhang, L. C., & Attar, H. (2016). Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Advanced Engineering Materials, 18(4), 463-475. https://doi.org/10.1002/adem.201500419
  • Zhang, M., Yang, Y., Song, C., Bai, Y., & Xiao, Z. (2018). Effect of the heat treatment on corrosion and mechanical properties of CoCrMo alloys manufactured by selective laser melting. Rapid Prototyping Journal, 24(7), 1235-1244. https://doi.org/10.1108/RPJ-10-2017-0215
  • Zhao, B., Wang, H., Qiao, N., Wang, C., & Hu, M. (2017). Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Materials Science and Engineering: C, 70(1), 832-841. https://doi.org/10.1016/j.msec.2016.07.045
  • Zhou, H., & Fan, Q. (2017). 3D reconstruction and SLM survey for dental implants. Journal of Mechanics in Medicine and Biology, 17(03), Article 1750084. https://doi.org/10.1142/S0219519417500841
  • Zong, W., Zhang, S., Zhang, C., Ren, L., & Wang, Q. (2020). Design and characterization of selective laser‐melted Ti6Al4V–5Cu alloy for dental implants. Materials and Corrosion, 71(10), 1697-1710. https://doi.org/10.1002/maco.202011650

Ortopedik İmplantlardaki Gelişmeler: İnsan Protezlerinin Üretiminde Seçici Lazer Ergitme Teknolojisinin Kapsamlı Bir İncelemesi

Year 2025, Volume: 13 Issue: 4, 1643 - 1660, 30.10.2025
https://doi.org/10.29130/dubited.1686889

Abstract

Katmanlı İmalat (Additive Manufacturing, AM) teknolojilerindeki gelişmeler, özellikle Seçici Lazer Ergitme (Selective Laser Melting, SLM) yöntemi, ortopedik, dental ve spinal implantların geliştirilmesinde önemli bir etki yaratmıştır. Bu makale, SLM teknolojisinin implantların biyouyumluluk, aşınma, yorulma ve korozyon direnci gibi özelliklerinin iyileştirilmesindeki rolünü kapsamlı bir şekilde incelemektedir. SLM, özelleştirilebilirlik, tasarım esnekliği ve karmaşık geometrilere sahip yapıların hassas gözeneklilikle üretilebilmesi gibi önemli avantajlar sunmaktadır. Bu özellikler, osseointegrasyon (kemik entegrasyonu) ve kemik rejenerasyonu açısından kritik öneme sahiptir. Makale, implant üretiminde kullanılan titanyum alaşımları ve Co-Cr-Mo alaşımları gibi çeşitli malzemeleri ele almakta ve bu malzemelerin mekanik ve tribolojik özelliklerini, yük taşıyan implant uygulamalarındaki uygunlukları bağlamında tartışmaktadır. Ayrıca, yüzey dokusu, pürüzlülük ve gözenekliliğin implantların performansı ve uzun ömürlülüğü üzerindeki etkisi irdelenmekte; bu faktörlerin mekanik özellikler, hücre tutunması ve insan dokusuyla bütünleşme üzerindeki rolü vurgulanmaktadır. Özetle, SLM, kişiselleştirilmiş mekanik özelliklere sahip, geliştirilmiş biyolojik etkinlik ve artırılmış biyouyumluluk sunan ortopedik ve dental implantların üretiminde güçlü bir yöntem olarak öne çıkmakta olup, implantlanabilir tıbbi cihazların geleceği açısından umut vadeden bir teknolojidir. Bu çalışmada, çeşitli bölümlerde gelecekteki araştırmacılara yönelik 2D çizimler ve ileri araştırma önerileri de sunulmuştur.

Project Number

-

References

  • Abate, K. M., Nazir, A., & Jeng, J. Y. (2021). Design, optimization, and selective laser melting of vin tiles cellular structure-based hip implant. The International Journal of Advanced Manufacturing Technology, 112(7), 2037-2050. https://doi.org/10.1007/s00170-020-06323-5
  • Bartolomeu, F., Costa, M. M., Alves, N., Miranda, G., & Silva, F. S. (2020a). Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants. Optics and Lasers in Engineering, 134, Article 106208. https://doi.org/10.1016/j.optlaseng.2020.106208
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., & Silva, F. S. (2020b). Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Materials Science and Engineering: C, 107, Article 110342. https://doi.org/10.1016/j.msec.2019.110342
  • Bram, M., Schiefer, H., Bogdanski, D., Köller, M., Buchkremer, H. P., & Stöver, D. (2006). Implant surgery: How bone bonds to PM titanium. Metal Powder Report, 61(2), 26-31. https://doi.org/10.1016/S0026-0657(06)70603-8
  • Chen, C., Hao, Y., Bai, X., Ni, J., Chung, S. M., Liu, F., & Lee, I. S. (2019). 3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model. Materials & Design, 175, Article 107824. https://doi.org/10.1016/j.matdes.2019.107824
  • Cheng, K. J., Liu, Y. F., Wang, J. H., Wang, R., Xia, J., Xu, X., JiangX. F., & Dong, X. T. (2022). 3D-printed porous condylar prosthesis for temporomandibular joint replacement: Design and biomechanical analysis. Technology and Health Care, 30(4), 1017-1030. https://doi.org/10.3233/THC-213534
  • Cosma, S. C., Matei, S., Balc, N., & Leordean, D. (2014). Dental implants with lattice structure fabricated by selective laser melting. International Virtual Research Conference in Technical Disciplines, Slovakia, 2(1), 18-24.
  • de Souza Soares, F. M., Barbosa, D. M., Corado, H. P. R., de Carvalho Santana, A. I., & Elias, C. N. (2022). Surface morphology, roughness, and corrosion resistance of dental implants produced by additive manufacturing. Journal of Materials Research and Technology, 21, 3844-3855. https://doi.org/10.1016/j.jmrt.2022.10.114
  • Dong, X., Zhou, Y., Sun, Q., Qu, Y., Shi, H., Liu, W., Peng, H., Zhang, B., Xu, S., Yan, J., & Li, N. (2020). Fatigue behavior of biomedical Co–Cr–Mo–W alloy fabricated by selective laser melting. Materials Science and Engineering: A, 795, Article 140000. https://doi.org/10.1016/j.msea.2020.140000
  • Elsayed, M., Ghazy, M., Youssef, Y., & Essa, K. (2019). Optimization of SLM process parameters for Ti6Al4V medical implants. Rapid Prototyping Journal, 25(3), 433-447. https://doi.org/10.1108/RPJ-05-2018-0112
  • Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341-344. https://doi.org/10.1016/j.scriptamat.2006.11.010
  • Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., & Nakamura, T. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 7(5), 2327-2336. https://doi.org/10.1016/j.actbio.2011.01.037
  • Ghosh, S., Abanteriba, S., Wong, S., & Houshyar, S. (2018). Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting. Journal of the Mechanical Behavior of Biomedical Materials, 87, 312-324. https://doi.org/10.1016/j.jmbbm.2018.07.031
  • Götz, H. E., Müller, M., Emmel, A., Holzwarth, U., Erben, R. G., & Stangl, R. (2004). Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials, 25(18), 4057-4064. https://doi.org/10.1016/j.biomaterials.2003.11.002
  • Han, W., Fang, S., Zhong, Q., & Qi, S. (2022). Influence of dental implant surface modifications on osseointegration and biofilm attachment. Coatings, 12(11), Article 1654. https://doi.org/10.3390/coatings12111654
  • Hyzy, S. L., Cheng, A., Cohen, D. J., Yatzkaier, G., Whitehead, A. J., Clohessy, R. M., Gittens, R. A., Boyan, B. D., & Schwartz, Z. (2016). Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti–6Al–4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model. Journal of Biomedical Materials Research Part A, 104(8), 2086-2098. https://doi.org/10.1002/jbm.a.35739
  • Ji, F., Zhang, C., & Chen, X. (2018). Structure optimization of porous dental implant based on 3D printing. IOP Conference Series: Materials Science and Engineering, 324(1), Article 012060. https://doi.org/10.1088/1757-899X/324/1/0120
  • Kozakiewicz, M., Gmyrek, T., Zajdel, R., & Konieczny, B. (2021). Custom-made zirconium dioxide implants for craniofacial bone reconstruction. Materials, 14(4), Article 840. https://doi.org/10.3390/ma14040840
  • Kumar, P., Sawant, M. S., Jain, N. K., & Gupta, S. (2022). Study of mechanical characteristics of additively manufactured Co-Cr-Mo-2/4/6Ti alloys for knee implant material. CIRP Journal of Manufacturing Science and Technology, 39, 261-275. https://doi.org/10.1016/j.cirpj.2022.08.015
  • Leordean, D., Dudescu, C., Marcu, T., Berce, P., & Balc, N. (2015a). Customized implants with specific properties, made by selective laser melting. Rapid Prototyping Journal, 21(1), 98-104. https://doi.org/10.1108/RPJ-11-2012-0107
  • Leordean, D., Radu, S. A., Frățilă, D., & Berce, P. (2015b). Studies on design of customized orthopedic endoprostheses of titanium alloy manufactured by SLM. The International Journal of Advanced Manufacturing Technology, 79(5), 905-920. https://doi.org/10.1007/s00170-015-6873-0
  • Lerebours, A., Demangel, C., Dembinski, L., Bouvier, S., Rassineux, A., & Egles, C. (2020). Effect of the residual porosity of CoCrMo bearing parts produced by additive manufacturing on wear of polyethylene. Biotribology, 23, Article 100138. https://doi.org/10.1016/j.biotri.2020.100138
  • Levy, H. A., Karamian, B. A., Yalla, G. R., Canseco, J. A., Vaccaro, A. R., & Kepler, C. K. (2023). Impact of surface roughness and bulk porosity on spinal interbody implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111(2), 478-489. https://doi.org/10.1002/jbm.b.35161
  • Lin, C. Y., Wirtz, T., LaMarca, F., & Hollister, S. J. (2007). Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Materials Research Part A, 83A(2), 272-279. https://doi.org/10.1002/jbm.a.31231
  • Liu, Y., Rath, B., Tingart, M., & Eschweiler, J. (2020). Role of implants surface modification in osseointegration: A systematic review. Journal of Biomedical Materials Research Part A, 108(3), 470-484. https://doi.org/10.1002/jbm.a.36829
  • Lu, Y., Ren, L., Xu, X., Yang, Y., Wu, S., Luo, J., Y, M., Liud. L., Zhuanged D., Yang K.& Lin, J. (2018). Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 81, 130-141. https://doi.org/10.1016/j.jmbbm.2018.02.026
  • Luo, L., Li, J., Lin, Z., Cheng, X., Wang, J., Wang, Y., & Huang, W. (2023). Anisotropic biomimetic trabecular porous three-dimensional-printed Ti-6Al-4V cage for lumbar interbody fusion. Materials & Design, 233, Article 112254. https://doi.org/10.1016/j.matdes.2023.112254
  • Mommaerts, M. Y., Depauw, P. R., & Nout, E. (2020). Ceramic 3D-printed titanium cranioplasty. Craniomaxillofacial Trauma & Reconstruction, 13(4), 329-333. https://doi.org/10.1177/1943387520927916
  • Mondal, P., Das, A., Wazeer, A., & Karmakar, A. (2022). Biomedical porous scaffold fabrication using additive manufacturing technique: porosity, surface roughness and process parameters optimization. International Journal of Lightweight Materials and Manufacture, 5(3), 384-396. https://doi.org/10.1016/j.ijlmm.2022.04.005
  • Mróz, A. B., Lapaj, L., Wisniewski, T., Skalski, K., & Leshchynsky, V. (2017). Friction and wear of the intervertebral disc endoprosthesis manufactured with use of selective laser melting process. Rapid Prototyping Journal, 23(6), 1032-1042. https://doi.org/10.1108/RPJ-11-2015-0171
  • Murchio, S. (2023). Hierarchical multifunctional cellular materials for implants with improved fatigue resistance and osteointegration [Doctoral dissertation, Università degli Studi di Trento]. https://doi.org/10.15168/11572_379289
  • Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., Hernandez, DH.,& Wicker, Hasır, R.B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 20-32. https://doi.org/10.1016/j.jmbbm.2008.05.004
  • Ni, J., Liu, F., Yang, G., Lee, G. H., Chung, S. M., Lee, I. S., & Chen, C. (2021). 3D-printed Ti6Al4V femoral component of knee: Improvements in wear and biological properties by AIP TiN and TiCrN coating. Journal of Materials Research and Technology, 14, 2322-2332. https://doi.org/10.1016/j.jmrt.2021.07.143
  • Pan, C. T., Lin, C. H., Huang, Y. S., Yang, T. L., Chen, S. Y., Ou, C. H., Chen, L. Y., Huang, J. C., Jang, J. S. C., Lin, H. K., & Lin, D. Y. (2017). Design of interbody fusion cages of Ti6Al4V with gradient porosity using a selective laser melting process for spinal fusion arthroplasty. Journal of Laser Micro/Nanoengineering, 12(1), 34-44. https://doi.org/10.2961/jlmn.2017.01.0007
  • Peng, W., Xu, L., You, J., Fang, L., & Zhang, Q. (2016). Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model. Biomedical Engineering Online, 15(1), 85. https://doi.org/10.1186/s12938-016-0207-9
  • Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., & Masaylo, D. (2016a). Producing hip implants of titanium alloys by additive manufacturing. International Journal of Bioprinting, 2(2), 78-84. https://doi.org/10.18063/IJB.2016.02.004
  • Popovich, A., Sufiiarov, V., Polozov, I., Borisov, E., & Masaylo, D. (2016b). Additive manufacturing of individual implants from titanium alloy. In Proceedings of the 25th Anniversary International Conference on Metallurgy and Materials (METAL 2016) (pp. 1504-1508).
  • Przekora, A., Kazimierczak, P., Wojcik, M., Chodorski, E., & Kropiwnicki, J. (2022). Mesh Ti6Al4V material manufactured by selective laser melting (SLM) as a promising intervertebral fusion cage. International Journal of Molecular Sciences, 23(7), Article 3985. https://doi.org/10.3390/ijms23073985
  • Revilla-León, M., Husain, N. A. H., Methani, M. M., & Özcan, M. (2021). Chemical composition, surface roughness, and ceramic bond strength of additively manufactured cobalt-chromium dental alloys. The Journal of Prosthetic Dentistry, 125(5), 825-831. https://doi.org/10.1016/j.prosdent.2020.03.012
  • Rezayat, M., Ashkani, O., & Fadaei, R. (2024). Investigating surface integrity and mechanical behavior of selective laser melting for dental implants. Applied Research, 3(4), Article e202300126. https://doi.org/10.1002/appl.202300126
  • Roudnicka, M., Bigas, J., Molnarova, O., Palousek, D., & Vojtech, D. (2021). Different response of cast and 3D-printed Co-Cr-Mo alloy to heat treatment: A thorough microstructure characterization. Metals, 11(5), Article 687. https://doi.org/10.3390/met11050687
  • Shaoki, A., Xu, J. Y., Sun, H., Chen, X. S., Ouyang, J., Zhuang, X. M., & Deng, F. L. (2016). Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting. Biofabrication, 8(4), Article 045014. https://doi.org/10.1088/1758-5090/8/4/045014
  • Sharma, N., Ostas, D., Rotar, H., Brantner, P., & Thieringer, F. M. (2021). Design and additive manufacturing of a biomimetic customized cranial implant based on voronoi diagram. Frontiers in Physiology, 12, Article 647923. https://doi.org/10.3389/fphys.2021.647923
  • Sikavitsas, V. I., Temenoff, J. S., & Mikos, A. G. (2001). Biomaterials and bone mechanotransduction. Biomaterials, 22(19), 2581-2593. https://doi.org/10.1016/S0142-9612(01)00002-3
  • Singla, A. K., Banerjee, M., Sharma, A., Singh, J., Bansal, A., Gupta, M. K., Khanna, N., Shahi, A. S., & Goyal, D. K. (2021). Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments. Journal of Manufacturing Processes, 64, 161-187. https://doi.org/10.1016/j.jmapro.2021.01.009
  • Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., Matsushita, T., Kokubo, T., & Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering: C, 59, 690-701. https://doi.org/10.1016/j.msec.2015.10.069
  • Tsuang, F. Y., Li, M. J., Chu, P. H., Tsou, N. T., & Sun, J. S. (2023). Mechanical performance of porous biomimetic intervertebral body fusion devices: an in vitro biomechanical study. Journal of Orthopaedic Surgery and Research, 18(1), Article 71. https://doi.org/10.1186/s13018-023-03556-4
  • Van Hooreweder, B., Apers, Y., Lietaert, K., & Kruth, J. P. (2017). Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomaterialia, 47, 193-202. https://doi.org/10.1016/j.actbio.2016.10.005
  • Vilhena, L. M., Shumayal, A., Ramalho, A., & Ferreira, J. A. M. (2020). Tribocorrosion behaviour of Ti6Al4V produced by selective laser melting for dental implants. Lubricants, 8(2), Article 22. https://doi.org/10.3390/lubricants8020022
  • Wally, Z. J., Haque, A. M., Feteira, A., Claeyssens, F., Goodall, R., & Reilly, G. C. (2019). Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 90, 20-29. https://doi.org/10.1016/j.jmbbm.2018.08.047
  • Wang, M., Wu, Y., Lu, S., Chen, T., Zhao, Y., Chen, H., & Tang, Z. (2016). Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design. Progress in Natural Science: Materials International, 26(6), 671-677. https://doi.org/10.1016/j.pnsc.2016.12.006
  • Wu, S., Liu, X., Yeung, K. W., Liu, C., & Yang, X. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80, 1-36. https://doi.org/10.1016/j.mser.2014.04.001
  • Wysocki, B., Maj, P., Sitek, R., Buhagiar, J., Kurzydłowski, K. J., & Święszkowski, W. (2017). Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Applied Sciences, 7(7), Article 657. https://doi.org/10.3390/app7070657
  • Xiang, S., Yuan, Y., Zhang, C., & Chen, J. (2022). Effects of process parameters on the corrosion resistance and biocompatibility of Ti6Al4V parts fabricated by selective laser melting. ACS Omega, 7(7), 5954-5961. https://doi.org/10.1021/acsomega.1c06246
  • Xiong, Y., Gao, R., Zhang, H., & Li, X. (2019). Design and fabrication of a novel porous titanium dental implant with micro/nano surface. International Journal of Applied Electromagnetics and Mechanics, 59(3), 1097-1102. https://doi.org/10.3233/JAE-171166
  • Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61-73. https://doi.org/10.1016/j.jmbbm.2015.06.024
  • Yang, H. J., & Oh, J. H. (2022). Reconstruction of mandibular contour defect using patient-specific titanium implant manufactured by selective laser melting method. Journal of Craniofacial Surgery, 33(7), 2055-2058. https://doi.org/10.1097/SCS.0000000000008513
  • Yoo, D. (2013). New paradigms in hierarchical porous scaffold design for tissue engineering. Materials Science and Engineering: C, 33(3), 1759-1772. https://doi.org/10.1016/j.msec.2012.12.092
  • Zaharin, H. A., Abdul Rani, A. M., Azam, F. I., Ginta, T. L., Sallih, N., Ahmad, A., Yunus, N. A., & Zulkifli, T. Z. A. (2018). Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds. Materials, 11(12), Article 2402. https://doi.org/10.3390/ma11122402
  • Zhang, L. C., & Attar, H. (2016). Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Advanced Engineering Materials, 18(4), 463-475. https://doi.org/10.1002/adem.201500419
  • Zhang, M., Yang, Y., Song, C., Bai, Y., & Xiao, Z. (2018). Effect of the heat treatment on corrosion and mechanical properties of CoCrMo alloys manufactured by selective laser melting. Rapid Prototyping Journal, 24(7), 1235-1244. https://doi.org/10.1108/RPJ-10-2017-0215
  • Zhao, B., Wang, H., Qiao, N., Wang, C., & Hu, M. (2017). Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Materials Science and Engineering: C, 70(1), 832-841. https://doi.org/10.1016/j.msec.2016.07.045
  • Zhou, H., & Fan, Q. (2017). 3D reconstruction and SLM survey for dental implants. Journal of Mechanics in Medicine and Biology, 17(03), Article 1750084. https://doi.org/10.1142/S0219519417500841
  • Zong, W., Zhang, S., Zhang, C., Ren, L., & Wang, Q. (2020). Design and characterization of selective laser‐melted Ti6Al4V–5Cu alloy for dental implants. Materials and Corrosion, 71(10), 1697-1710. https://doi.org/10.1002/maco.202011650
There are 64 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Review
Authors

Salar Hashemi Nasab 0009-0009-8134-2857

Rojin Hamsian Etefagh 0009-0003-5978-4751

Arian Bazmi 0009-0004-3028-8735

Shahram Mahboubizadeh 0009-0001-4375-0325

Omid Ashkani 0000-0002-8319-6023

Yasemin Tabak 0000-0002-4912-8828

Project Number -
Submission Date April 30, 2025
Acceptance Date August 21, 2025
Publication Date October 30, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Hashemi Nasab, S., Etefagh, R. H., Bazmi, A., … Mahboubizadeh, S. (2025). Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics. Duzce University Journal of Science and Technology, 13(4), 1643-1660. https://doi.org/10.29130/dubited.1686889
AMA Hashemi Nasab S, Etefagh RH, Bazmi A, Mahboubizadeh S, Ashkani O, Tabak Y. Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics. DUBİTED. October 2025;13(4):1643-1660. doi:10.29130/dubited.1686889
Chicago Hashemi Nasab, Salar, Rojin Hamsian Etefagh, Arian Bazmi, Shahram Mahboubizadeh, Omid Ashkani, and Yasemin Tabak. “Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1643-60. https://doi.org/10.29130/dubited.1686889.
EndNote Hashemi Nasab S, Etefagh RH, Bazmi A, Mahboubizadeh S, Ashkani O, Tabak Y (October 1, 2025) Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics. Duzce University Journal of Science and Technology 13 4 1643–1660.
IEEE S. Hashemi Nasab, R. H. Etefagh, A. Bazmi, S. Mahboubizadeh, O. Ashkani, and Y. Tabak, “Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics”, DUBİTED, vol. 13, no. 4, pp. 1643–1660, 2025, doi: 10.29130/dubited.1686889.
ISNAD Hashemi Nasab, Salar et al. “Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics”. Duzce University Journal of Science and Technology 13/4 (October2025), 1643-1660. https://doi.org/10.29130/dubited.1686889.
JAMA Hashemi Nasab S, Etefagh RH, Bazmi A, Mahboubizadeh S, Ashkani O, Tabak Y. Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics. DUBİTED. 2025;13:1643–1660.
MLA Hashemi Nasab, Salar et al. “Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1643-60, doi:10.29130/dubited.1686889.
Vancouver Hashemi Nasab S, Etefagh RH, Bazmi A, Mahboubizadeh S, Ashkani O, Tabak Y. Advancements in Orthopedic Implants: A Comprehensive Review of Selective Laser Melting Technology in Manufacturing Human Prosthetics. DUBİTED. 2025;13(4):1643-60.