Stainless steel is a material that can be used in many areas because it resists corrosion excellently, can be used at low and high temperatures, is easy to shape and has a pleasant aestheticappearance. In this study, a model has been developed using the adaptive network based fuzzy logic inference system (ANFIS) approach based on the surface roughness cutting parameters of 316L stainless steel. Cutting speed, feed, cutting depth and cutting width are selected as cutting parameters. ANFIS modeling was performed using the ANFIS editor of the Matlab 8.5 program. When the experimental values were compared with the predicted values of the developed ANFIS model, it was found that the maximum percentage error value was 9.58 and the average percentage error value was 5.25. The correlation coefficient of the ANFIS model was 0.997. The results showed that ANFIS can be an effective method for estimating surface roughness in 316L stainless steel milling process.
Paslanmaz çelikler, mükemmel korozyon direnci, düşük ve yüksek sıcaklıklarda kullanılabilmesi, kolay şekillendirilebilmesi ve iyi estetik görünüme sahip olmasından dolayı birçok alanda kullanılabilen bir malzemedir. Bu çalışmada, 316L paslanmaz çeliğin yüzey pürüzlülüğü kesme parametrelerine bağlı olarak adaptif ağ tabanlı bulanık mantık çıkarım sistemi (ANFIS) yaklaşımı kullanılarak bir model geliştirilmiştir. Kesme parametreleri olarak kesme hızı, ilerleme, kesme derinliği ve kesme genişliği seçilmiştir. Matlab 8.5 programının ANFIS editörü kullanılarak ANFIS modellemesi gerçekleştirilmiştir. Geliştirilen ANFIS modelinin tahmin sonuçları ile deneysel sonuçlar karşılaştırıldığında en büyük yüzde hata değerinin 9,58 ve ortalama yüzde hata değerinin 5,25 olduğu tespit edilmiştir. ANFIS modelinin korelasyon katsayısı 0,997 olarak bulunmuştur. Sonuçlar, ANFIS modelinin 316L paslanmaz çeliğin frezeleme işleminde yüzey pürüzlülüğün tahmin edilmesinde etkin bir yöntem olabileceğini göstermiştir.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Mart 2019 |
Yayımlandığı Sayı | Yıl 2019 |