Araştırma Makalesi
BibTex RIS Kaynak Göster

Allium cepa Kök Ucu Hücrelerinde Sülfonamid-Aldehit Türevinin Sitotoksik ve Genotoksik Etkileri

Yıl 2021, , 130 - 138, 31.01.2021
https://doi.org/10.29130/dubited.752287

Öz

Kimyasalların sürekli üretimi ve çevreye salınmaları sitotoksisitelerini ve genotoksisitelerini belirleme ihtiyacını ortaya çıkarmıştır. Biyolojik aktivite özellikleri geniş bir spektrumda değişen sülfonamid türevleri, tarım, tıp, eczacılık ve diğer birçok alanda sıklıkla kullanılmaktadır. Bu bileşikler, kullanımları ve çeşitlilikleri nedeniyle ekolojik sistemde önemli bir döngüye sahiptir. Bu çalışmada, sülfonamid-aldehid (SA) türevinin potansiyel sitotoksik ve genotoksik etkileri 6.25, 12.5, 25, 50 ve 100 uM konsantrasyonlarında Allium test sistemi kullanılarak araştırılmıştır. A. cepa hücrelerinde, artan SA konsantrasyonları mitotik indeksi inhibe ederek ve nükleer lezyonları indükleyerek sitotoksik etkilere neden oldu. Ek olarak, artan SA konsantrasyonları, en yaygın olanları C-mitoz, yapışkan metafaz ve anafaz köprüsü olan kromozom anomalileri ve mikronükleusu indükleyerek genotoksik etkilere neden oldu. Sonuçlar gösteriyor ki mikronükleus, nükleer lezyonlar ve kromozom anomalilerinde 25 uM’lık konsantrasyon ve mitotik indekste ise 50 uM’lık konsantrasyon EC50'dir (p <0.05).

Kaynakça

  • [1] P. Gregory, “Azo dyes: Structure-carcinogenicity relationships,” Dyes Pigments, vol. 7, no. 1, pp. 45–56, 1986, doi: 10.1016/0143-7208(86)87005-X.
  • [2] G. Vastaga, S. Apostolova, B. Matijevića, and F. Assaleh, “Multivariate assessment of azo dyes' biological activity parameters,” J. Chromatog. B, vol. 1084, pp. 141–149, 2018, doi: 10.1016/j.jchromb.2018.03.035.
  • [3] S. Zencir, “Diazolu ve schiff bazlı kaliks[4]aren bileşikleri ve metal kompleksleri,” Yüksek Lisans tezi, Kimya Bölümü, Pamukkale Üniversitesi, Denizli, Türkiye, 2005.
  • [4] A. M. A. Munther, H. S. Hussam, and J. Ekhlasqanber, “Antioxidant activity of some newly prepared symmetrically azo dyes derived from sulfa drugs,” Asian J. Pharm. Clin. Res., vol. 12, no. 2, pp. 479–483, 2019, doi: 10.22159/ajpcr.2019.v12i2.30326.
  • [5] S. Nakajima, “The path to discovering antimicrobial agents,” Pharm. Technol. Japan, vol. 24, no. 4, pp. 693–698, 2008.
  • [6] E. Dadfar and S. Fatemeh, “Prediction of some thermodynamic properties of sulfonamide drugs using genetic algorithm-multiple linear regressions,” J. Chin. Chem. Soc., vol. 67, no. 3, pp. 1–22, 2019, doi: 10.1002/jccs.201900232.
  • [7] S. Özkan and R. Liman, “Cytotoxicity and genotoxicity in Allium cepa L. root meristem cells exposed to the herbicide penoxsulam,” Celal Bayar University Journal of Science, vol. 15, no. 2, pp. 221–226, 2019, doi: 10.18466/cbayarfbe.533466.
  • [8] A. Levan, “The effect of colchicine on root mitosis in Allium,” Hereditas, vol. 24, pp. 471–486. 1938, doi: 10.1111/j.1601-5223.1938.tb03221.x.
  • [9] W. F. Grant, “Chromosome aberration assays in Allium,” Mutat. Res. Rev. Tox., vol. 99, pp. 273–291, 1982, doi: 10.1016/0165-1110(82)90046-X.
  • [10] T. H. Ma, Z. Xu, C. Xu, H. McConnell, E. V. Rabago, G. A. Arreola, and H. Zhang, “The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants,” Mutat. Res., vol. 334, pp, 185–195, 1995, doi: 10.1016/0165-1161(95)90010-1.
  • [11] J. Rank, “The method of Allium anaphase-telophase chromosome aberration assay,” Ekologija, vol. 1, pp. 38–42, 2003.
  • [12] D. M. Leme and M. A. Marin-Morales, “Allium cepa test in environmental monitoring: A review on its application,” Mutat. Res., vol. 682, pp. 71–81, 2009, 10.1016/j.mrrev.2009.06.002.
  • [13] M. Gümüş, Y. Sert, and İ. Koca, “Synthesis, characterization and theoretical studies of novel sulfonamide-aldehydes derivatives having tautomeric forms,” Organic Communications, vol. 12, no. 4, pp. 176–187, 2019, 10.25135/acg.oc.67.19.09.1407.
  • [14] H. E. Eroğlu, A. Aksoy, E. Hamzaoğlu, Ü. Budak, and S. Albayrak, “Cytogenetic effects of nine Helichrysum taxa in human lymphocytes culture,” Cytotechnology, vol. 59, no. 1, pp. 65–72, 2009, doi: 10.1007/s10616-009-9193-0.
  • [15] G. Fiskesjö, “The Allium test as a standard in environmental monitoring,” Hereditas, vol. 102, pp. 99–112, 1985, doi: 10.1111/j.1601-5223.1985.tb00471.x.
  • [16] K. Y. Ping, I. Darah, U. K. Yusuf, C. Yeng, and S. Sasidharan, “Genotoxicity of Euphorbia hirta: an Allium cepa assay,” Molecules, vol. 17, no. 7, pp. 7782–7791, 2012, doi: 10.3390/molecules17077782.
  • [17] A. Kabarity, A. El-Bayoumi, and A. Habib, “Effect of morphine sulphate on mitosis of Allium cepa L. root tips,” Biol. Plantarum, vol. 16, pp. 275–282, 1974.
  • [18] P. G. C. Odeigah, O. Nurudeen, and O. O. Amund, “Genotoxicity of oil field wastewater in Nigeria,” Hereditas, vol. 126, pp. 161–167, 1997, doi: 10.1111/j.1601-5223.1997.00161.x.
  • [19] D. M. Leme, D. F. Angelis, and M. A. Marin-Morales, “Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells,” Aquat. Toxicol., vol. 88, no. 4, pp. 214–219, 2008, doi: 10.1016/j.aquatox.2008.04.012.
  • [20] L. Peruzzi and H. E. Eroğlu, “Karyotype asymmetry: Again, how to measure and what to measure?” Comp. Cytogenet., vol. 7, no. 1, pp. 1–9, 2013, doi: 10.3897/CompCytogen.v7i1.4431.
  • [21] A. Badr, “Cytogenetic activities of 3 sulphonamides,” Mutation Research Letters, vol. 104, no. 1-3, pp. 95–100, 1982.
  • [22] C. E. e Silva, F. F. V. Borges, A. Bernardes, C. N. Perez, D. M. e Silva, and L. Chen-Chen, “Genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of sulfonamide chalcone using the ames test and the mouse bone marrow micronucleus test,” Plos One, vol. 10, no. 9, pp. e0137063, 2015, doi: 10.1371/journal.pone.0137063.
  • [23] S. Şen, A. A. Berber, T. Demirci, M. Arslan, and H. Aksoy, “Cytotoxic and genotoxic evaluation of some newly synthesized sulfonamide derivatives,” Fresen.Environ. Bull., vol. 26, no. 3, pp. 2243–2250, 2017.
  • [24] M. Samadaei et al., “Synthesis and cytotoxic activity of chiral sulfonamides based on the 2-azabicycloalkane skeleton,” Molecules, vol. 25, no. 10, pp. 2355–2364, 2020, doi: 10.3390/molecules25102355.

Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells

Yıl 2021, , 130 - 138, 31.01.2021
https://doi.org/10.29130/dubited.752287

Öz

The continuous production and release into the environment of chemicals has revealed the need to determine their cytotoxicity and genotoxicity. Sulfonamide-aldehyde (SA) derivatives, whose biological activity properties vary in a wide spectrum, are frequently used in agriculture, medicine, pharmacy and many other fields. These compounds have an important cycle in the ecological system due to their use and diversity. In the present study, the potential cytotoxic and genotoxic effects of sulfonamide-aldehyde derivative were investigated using Allium test system with the concentrations of 6.25, 12.5, 25, 50, and 100 μM. In A. cepa cells, the increasing concentrations of SA caused cytotoxic effects by inducing nuclear lesions and inhibition of mitotic index. In addition, the increasing concentrations of SA caused genotoxic effects by inducing micronucleus and chromosome aberrations, which the most common ones are C-mitosis, sticky metaphase, and anaphase bridge. The results indicate that the concentration of 25 μM is EC50 in micronucleus, nuclear lesions, and chromosome aberrations; and 50 μM is EC50 in mitotic index (p < 0.05).

Kaynakça

  • [1] P. Gregory, “Azo dyes: Structure-carcinogenicity relationships,” Dyes Pigments, vol. 7, no. 1, pp. 45–56, 1986, doi: 10.1016/0143-7208(86)87005-X.
  • [2] G. Vastaga, S. Apostolova, B. Matijevića, and F. Assaleh, “Multivariate assessment of azo dyes' biological activity parameters,” J. Chromatog. B, vol. 1084, pp. 141–149, 2018, doi: 10.1016/j.jchromb.2018.03.035.
  • [3] S. Zencir, “Diazolu ve schiff bazlı kaliks[4]aren bileşikleri ve metal kompleksleri,” Yüksek Lisans tezi, Kimya Bölümü, Pamukkale Üniversitesi, Denizli, Türkiye, 2005.
  • [4] A. M. A. Munther, H. S. Hussam, and J. Ekhlasqanber, “Antioxidant activity of some newly prepared symmetrically azo dyes derived from sulfa drugs,” Asian J. Pharm. Clin. Res., vol. 12, no. 2, pp. 479–483, 2019, doi: 10.22159/ajpcr.2019.v12i2.30326.
  • [5] S. Nakajima, “The path to discovering antimicrobial agents,” Pharm. Technol. Japan, vol. 24, no. 4, pp. 693–698, 2008.
  • [6] E. Dadfar and S. Fatemeh, “Prediction of some thermodynamic properties of sulfonamide drugs using genetic algorithm-multiple linear regressions,” J. Chin. Chem. Soc., vol. 67, no. 3, pp. 1–22, 2019, doi: 10.1002/jccs.201900232.
  • [7] S. Özkan and R. Liman, “Cytotoxicity and genotoxicity in Allium cepa L. root meristem cells exposed to the herbicide penoxsulam,” Celal Bayar University Journal of Science, vol. 15, no. 2, pp. 221–226, 2019, doi: 10.18466/cbayarfbe.533466.
  • [8] A. Levan, “The effect of colchicine on root mitosis in Allium,” Hereditas, vol. 24, pp. 471–486. 1938, doi: 10.1111/j.1601-5223.1938.tb03221.x.
  • [9] W. F. Grant, “Chromosome aberration assays in Allium,” Mutat. Res. Rev. Tox., vol. 99, pp. 273–291, 1982, doi: 10.1016/0165-1110(82)90046-X.
  • [10] T. H. Ma, Z. Xu, C. Xu, H. McConnell, E. V. Rabago, G. A. Arreola, and H. Zhang, “The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants,” Mutat. Res., vol. 334, pp, 185–195, 1995, doi: 10.1016/0165-1161(95)90010-1.
  • [11] J. Rank, “The method of Allium anaphase-telophase chromosome aberration assay,” Ekologija, vol. 1, pp. 38–42, 2003.
  • [12] D. M. Leme and M. A. Marin-Morales, “Allium cepa test in environmental monitoring: A review on its application,” Mutat. Res., vol. 682, pp. 71–81, 2009, 10.1016/j.mrrev.2009.06.002.
  • [13] M. Gümüş, Y. Sert, and İ. Koca, “Synthesis, characterization and theoretical studies of novel sulfonamide-aldehydes derivatives having tautomeric forms,” Organic Communications, vol. 12, no. 4, pp. 176–187, 2019, 10.25135/acg.oc.67.19.09.1407.
  • [14] H. E. Eroğlu, A. Aksoy, E. Hamzaoğlu, Ü. Budak, and S. Albayrak, “Cytogenetic effects of nine Helichrysum taxa in human lymphocytes culture,” Cytotechnology, vol. 59, no. 1, pp. 65–72, 2009, doi: 10.1007/s10616-009-9193-0.
  • [15] G. Fiskesjö, “The Allium test as a standard in environmental monitoring,” Hereditas, vol. 102, pp. 99–112, 1985, doi: 10.1111/j.1601-5223.1985.tb00471.x.
  • [16] K. Y. Ping, I. Darah, U. K. Yusuf, C. Yeng, and S. Sasidharan, “Genotoxicity of Euphorbia hirta: an Allium cepa assay,” Molecules, vol. 17, no. 7, pp. 7782–7791, 2012, doi: 10.3390/molecules17077782.
  • [17] A. Kabarity, A. El-Bayoumi, and A. Habib, “Effect of morphine sulphate on mitosis of Allium cepa L. root tips,” Biol. Plantarum, vol. 16, pp. 275–282, 1974.
  • [18] P. G. C. Odeigah, O. Nurudeen, and O. O. Amund, “Genotoxicity of oil field wastewater in Nigeria,” Hereditas, vol. 126, pp. 161–167, 1997, doi: 10.1111/j.1601-5223.1997.00161.x.
  • [19] D. M. Leme, D. F. Angelis, and M. A. Marin-Morales, “Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells,” Aquat. Toxicol., vol. 88, no. 4, pp. 214–219, 2008, doi: 10.1016/j.aquatox.2008.04.012.
  • [20] L. Peruzzi and H. E. Eroğlu, “Karyotype asymmetry: Again, how to measure and what to measure?” Comp. Cytogenet., vol. 7, no. 1, pp. 1–9, 2013, doi: 10.3897/CompCytogen.v7i1.4431.
  • [21] A. Badr, “Cytogenetic activities of 3 sulphonamides,” Mutation Research Letters, vol. 104, no. 1-3, pp. 95–100, 1982.
  • [22] C. E. e Silva, F. F. V. Borges, A. Bernardes, C. N. Perez, D. M. e Silva, and L. Chen-Chen, “Genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of sulfonamide chalcone using the ames test and the mouse bone marrow micronucleus test,” Plos One, vol. 10, no. 9, pp. e0137063, 2015, doi: 10.1371/journal.pone.0137063.
  • [23] S. Şen, A. A. Berber, T. Demirci, M. Arslan, and H. Aksoy, “Cytotoxic and genotoxic evaluation of some newly synthesized sulfonamide derivatives,” Fresen.Environ. Bull., vol. 26, no. 3, pp. 2243–2250, 2017.
  • [24] M. Samadaei et al., “Synthesis and cytotoxic activity of chiral sulfonamides based on the 2-azabicycloalkane skeleton,” Molecules, vol. 25, no. 10, pp. 2355–2364, 2020, doi: 10.3390/molecules25102355.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Halil Erhan Eroğlu 0000-0002-4509-4712

Nisa Gümüş 0000-0002-5067-3874

Mehmet Gümüş 0000-0001-9262-7940

Emre Yağcı 0000-0001-9460-4857

İrfan Koca 0000-0001-7873-159X

Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Eroğlu, H. E., Gümüş, N., Gümüş, M., Yağcı, E., vd. (2021). Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells. Duzce University Journal of Science and Technology, 9(1), 130-138. https://doi.org/10.29130/dubited.752287
AMA Eroğlu HE, Gümüş N, Gümüş M, Yağcı E, Koca İ. Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells. DÜBİTED. Ocak 2021;9(1):130-138. doi:10.29130/dubited.752287
Chicago Eroğlu, Halil Erhan, Nisa Gümüş, Mehmet Gümüş, Emre Yağcı, ve İrfan Koca. “Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium Cepa Root Tip Cells”. Duzce University Journal of Science and Technology 9, sy. 1 (Ocak 2021): 130-38. https://doi.org/10.29130/dubited.752287.
EndNote Eroğlu HE, Gümüş N, Gümüş M, Yağcı E, Koca İ (01 Ocak 2021) Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells. Duzce University Journal of Science and Technology 9 1 130–138.
IEEE H. E. Eroğlu, N. Gümüş, M. Gümüş, E. Yağcı, ve İ. Koca, “Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells”, DÜBİTED, c. 9, sy. 1, ss. 130–138, 2021, doi: 10.29130/dubited.752287.
ISNAD Eroğlu, Halil Erhan vd. “Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium Cepa Root Tip Cells”. Duzce University Journal of Science and Technology 9/1 (Ocak 2021), 130-138. https://doi.org/10.29130/dubited.752287.
JAMA Eroğlu HE, Gümüş N, Gümüş M, Yağcı E, Koca İ. Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells. DÜBİTED. 2021;9:130–138.
MLA Eroğlu, Halil Erhan vd. “Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium Cepa Root Tip Cells”. Duzce University Journal of Science and Technology, c. 9, sy. 1, 2021, ss. 130-8, doi:10.29130/dubited.752287.
Vancouver Eroğlu HE, Gümüş N, Gümüş M, Yağcı E, Koca İ. Cytotoxic and Genotoxic Effects of Sulfonamide-Aldehyde Derivative in Allium cepa Root Tip Cells. DÜBİTED. 2021;9(1):130-8.