Araştırma Makalesi
BibTex RIS Kaynak Göster

Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu

Yıl 2020, , 2491 - 2515, 29.10.2020
https://doi.org/10.29130/dubited.789691

Öz

Fotovoltaik hücreler, güneşten gelen elektromanyetik enerjiyi elektrik enerjisine dönüştüren enerji dönüşüm sistemleridir. Bu çalışmada 40°42’52.2”K, 31°31’29.8”D koordinatlarında kurulu bulunan 36 hücreli polikristal tür bir güneş paneli, çeşitli sensörler ve veri kaydedici cihazlar kullanılarak hazırlanan deney düzeneği temelinde; i) güneş ışınım şiddetinin fotovoltaik panel üzerindeki etkisinin incelenmesi, ii) fotovoltaik panelin akım-voltaj (I-V) karakteristiğinin incelenmesi, iii) fotovoltaik panelden elde edilen akım-voltaj eğrilerinin literatürdeki modeller ile karşılaştırılması ve validasyonu amaçlanmıştır. Söz konusu fotovoltaik panel için farklı güneş ışınım şiddetinde ve farklı sıcaklıklarda ölçülen I-V karakteristikleri; 4-değişkenli, 5-değişkenli, geliştirilmiş 4-değişkenli ve 2-diyotlu model olmak üzere toplam 4 farklı analitik model kullanılarak modellenmiş ve doğrulanmıştır. I-V ilişkisini tanımlayan analitik denklemler Visual Basic programlama dili kullanılarak çözümlenmiştir. Modellerden elde edilen sonuçlar ile ölçülen değerler arasındaki karşılaştırma R² ve RMSE olmak üzere 2 istatistiksel parametre üzerinden gerçekleştirilmiştir. Elde edilen sonuçların istatistiksel analizi; bu çalışma kapsamında kullanılan 4 farklı model içerisinde, geliştirilmiş 4-değişkenli modelin diğer modellere göre daha başarılı tahmin sonuçlarına yol açtığını göstermektedir.

Destekleyen Kurum

Bolu Abant İzzet Baysal Üniversitesi

Proje Numarası

2017.09.05.1262

Teşekkür

Bu araştırma “Bağımsız bir fotovoltaik sistemin nümerik modellenmesi, optimizasyonu ve deneysel validasyonu” başlığı [Proje No: 2017.09.05.1262] ile Bolu Abant İzzet Baysal Üniversitesi tarafından Bilimsel Araştırma Projesi olarak desteklenmiştir.

Kaynakça

  • [1] British Petroleum, “BP statistical review of world energy”, 2019. [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
  • [2] International Energy Agency, “Key World Energy Statistics”, 2019. [Online]. Available: https://webstore.iea.org/key-world-energy-statistics-2019.
  • [3] TC Enerji ve Tabii Kaynaklar Bakanlığı, “Dünya ve Türkiye Enerji ve Tabii Kaynaklar Görünümü 2017”, 2017. [Online]. Available: https://www.enerji.gov.tr/tr-TR/Enerji-ve-Tabii-Kaynaklar-Gorunumleri.
  • [4] Solargis, 2018. [Online]. Available: https://solargis.info/purchase/#tl=satellite&ot= CLIMDATA.
  • [5] M. A. Green, Solar cells: operating principles, technology, and system applications. New York, NY, USA: Prentice Hall, 1981.
  • [6] İ. Altaş, “Fotovoltaj güneş pilleri: yapısal özellikleri ve karakteristikleri,”, Enerji, Elektrik, Elektromekanik-3e, vol. 47, pp. 66-71, 1998.
  • [7] H. S. Rauschenbach, Solar cell array design handbook: the principles and technology of photovoltaic energy conversion. Netherlands, Springer Science, 2012.
  • [8] C. Waldauf, P. Schilinsky, J. Hauch and C. J. Brabec, “Material and device concepts for organic photovoltaics: towards competitive efficiencies”, Thin Solid Films, vol. 451, pp. 503-507, 2004.
  • [9] NREL, “Champion photovoltaic module efficiency chart”, 2019. [Online]. Available: https://www.nrel.gov/pv/module-efficiency.html, 2019.
  • [10] V. J. Chin, Z.Salam and K.Ishaque, “Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review”, Applied Energy, vol. 154, pp. 500-519, 2015.
  • [11] V. Khanna, B. Das, D. Bisht and P. Singh, “A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm”, Renewable Energy, vol. 78, pp. 105-113, 2015.
  • [12] V. L.Brano, A. Orioli, G. Ciulla and A. Di Gangi, “An improved five-parameter model for photovoltaic modules”, Solar Energy Materials and Solar Cells, vol. 94(8) , pp. 1358-1370, 2010.
  • [13] N. A. Rahim, H. W. Ping and J. Selvaraj, “Photovoltaic module modeling using Simulink/Matlab”, Procedia Environmental Sciences, vol. 17, pp. 537-546, 2013.
  • [14] B. Marion, S. Rummel and A. Anderberg, “Current–voltage curve translation by bilinear interpolation”, Progress in Photovoltaics: Research and Applications, vol. 12(8): 593-607, 2004.
  • [15] Y. Hishikawa, Y. Imura, T. Oshiro. “Irradiance-dependence and translation of the IV characteristics of crystalline silicon solar cells”, presented at the 28th IEEE PV Specialists Conference, Anchorage, Alaska, September 15-20, 2000.
  • [16] W. De Soto, S. Klein and W. Beckman, “Improvement and validation of a model for photovoltaic array performance”, Solar Energy, vol. 80(1) , pp. 78-88, 2006.
  • [17] A. Toprak, H. Ş. Kılıç, A. Toprak and A. Kepçeoğlu, “Güneş Pilinin Tek Diyot Rs Model Parametrelerinin Hesaplanması ve I-V İle PV Karakteristiklerinin İncelenmesi”, Selçuk Üniversitesi Sosyal ve Teknik Araştırmalar Dergisi vol. 12, pp. 13-22, 2016.
  • [18] H. R. Ozcalık, S. Yılmaz and E. Kılıc, “Güneş Pilinin Bir Diyotlu Eşdeğer Devre Yardımıyla Matematiksel Modelinin Çıkartılması ve Parametrelerinin İncelenmesi”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 16(1) , pp. 1-10, 2013.
  • [19] W. Xiao, W. G. Dunford and A. Capel, “A novel modeling method for photovoltaic cells,” presented at the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, June 20-25, 2004.
  • [20] N. N. Ulapane, C. H. Dhanapala, S. M. Wickramasinghe, S. G. Abeyratne, N. Rathnayake and P. J. Binduhewa, “Extraction of parameters for simulating photovoltaic panels,” presented at the 6th IEEE International Conference on Industrial and Information Systems (ICIIS), Kandy, Sri Lanka, August 16-19, 2011.
  • [21] R. Chenni, M. Makhlouf, T. Kerbache and A. Bouzid, “A detailed modeling method for photovoltaic cells”, Energy, vol. 32(9) , pp. 1724-1730, 2007.
  • [22] Q. Kou, S. Klein and W. Beckman, “A method for estimating the long-term performance of direct-coupled PV pumping systems”, Solar Energy, vol. 64(1-3), pp. 33-40, 1998.
  • [23] T. Easwarakhanthan, J. Bottin, I. Bouhouch and C. Boutrit, “Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers”, International Journal of Solar Energy, vol. 4(1) , pp. 1-12, 1986.
  • [24] A. Ortiz-Conde, Y. Ma, J. Thomson, E. Santos, J. Liou, F. G. Sánchez., M. Lei, J. Finol and P. Layman, “Direct extraction of semiconductor device parameters using lateral optimization method”, Solid-State Electronics, vol. 43(4), pp. 845-848, 1999.
  • [25] P. Saha, S. Kumar, S. K. Nayak and H. S.Sahu, “Parameter estimation of double diode photo-voltaic module,” presented at the 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN 2015), Arunachal Pradesh, India, January 10-11, 2015.
  • [26] K. El-Naggar, M. Al Rashidi, M. Al Hajri and A. Al-Othman, “Simulated annealing algorithm for photovoltaic parameters identification”, Solar Energy, vol. 86(1), pp. 266-274, 2012.
  • [27] A.Sellami and M. Bouaïcha, “Application of the genetic algorithms for identifying the electrical parameters of PV solar generators” in Solar cells-silicon wafer-based technologies: InTech, L. A. Kosyachenko, 2011.
  • [28] N. Moldovan, R. Picos and E. Garcia-Moreno, “Parameter extraction of a solar cell compact model usign genetic algorithms,”presented at the Electron Devices, 2009, Santiago de Compastela, Spain, Feb. 11-13, 2009.
  • [29] W. T. Da Costa, J. F. Fardin, D. S. Simonetti and L. Neto , “Identification of photovoltaic model parameters by differential evolution”, presented at the IEEE International Conference on Industrial Technology (ICIT), Vina del Mar, Chile, March 14-17, 2010.
  • [30] W. Gong and Z. Cai, “Parameter extraction of solar cell models using repaired adaptive differential evolution”, Solar Energy, vol. 94, pp. 209-220, 2013.
  • [31] M. Ye, X. Wang and Y. Xu, “Parameter extraction of solar cells using particle swarm optimization”, Journal of Applied Physics, vol. 105(9), pp. 094502, 2009.
  • [32] L. Sandrolini, M. Artioli and U. Reggiani, “Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis”, Applied Energy, vol. 87(2), pp. 442-451, 2010.
  • [33] J. Ma, T. Ting, K. L. Man, N. Zhang, S-U. Guan and P. W.Wong, “Parameter estimation of photovoltaic models via cuckoo search”, Journal of Applied Mathematics, vol. 2013, pp. 1-8, 2013.
  • [34] N. Rajasekar, N. K.Kumar and R. Venugopalan, “Bacterial foraging algorithm based solar PV parameter estimation”, Solar Energy, vol. 97, pp. 255-265, 2013.
  • [35] A. Askarzadeh and A. Rezazadeh, “Parameter identification for solar cell models using harmony search-based algorithms”, Solar Energy, vol. 86(11), pp. 3241-3249, 2012.
  • [36] M. Al Hajri, K. El-Naggar, M. Al Rashidi and A. Al-Othman, “Optimal extraction of solar cell parameters using pattern search”, Renewable energy, vol. 44, pp. 238-245, 2012.
  • [37] M. Al Rashidi, M. Al Hajri, K. El-Naggar and A. Al-Othman, “A new estimation approach for determining the I–V characteristics of solar cells”, Solar Energy, vol. 85(7), pp. 1543-1550, 2011.
  • [38] A. Askarzadeh, A.Rezazadeh, “Artificial bee swarm optimization algorithm for parameters identification of solar cell models”, Applied energy, vol. 102, pp. 943-949, 2013.
  • [39] A. Askarzadeh and A. Rezazadeh, “Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach”, Solar Energy, vol. 90, pp. 123-133, 2013b.
  • [40] A. N. Celik and N. Acikgoz, “Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five-parameter models”, Applied energy, vol. 84(1), pp. 1-15, 2007.
  • [41] M. De Blas, J. Torres, E. Prieto and A. Garcia, “Selecting a suitable model for characterizing photovoltaic devices”, Renewable Energy, vol. 25(3), pp. 371-380, 2002.
  • [42] R. Khezzar, M. Zereg and A. Khezzar, “Modeling improvement of the four parameter model for photovoltaic modules”, Solar Energy, vol. 110, pp. 452-462, 2014.
  • [43] W. Zhou, H. Yang and Z.Fang, “A novel model for photovoltaic array performance prediction”, Applied Energy, vol. 84(12), pp.1187-1198, 2007.
  • [44] K. Ishaque, Z.Salam and H. Taheri, “Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model”, Simulation Modelling Practice and Theory, vol. 19(7), pp. 1613-1626, 2011.
  • [45] J. A. Duffie and W. A. Beckman. Solar Engineering of Thermal Processes, 4th ed. New York, NY, USA: John Wiley & Sons. 2013.
  • [46] D. N. Gujarati, D. C. Porter, Ü Şenesen and Günlük-Şenesen G. Temel Ekonometri, Literatür Yayıncılık, 2012.
  • [47] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance”, Climate Research, vol. 30, no.1, pp. 79-82, 2005.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Çelik Bu kişi benim 0000-0002-1530-4926

Fatih Koç 0000-0002-1530-4926

Proje Numarası 2017.09.05.1262
Yayımlanma Tarihi 29 Ekim 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Çelik, A., & Koç, F. (2020). Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu. Duzce University Journal of Science and Technology, 8(4), 2491-2515. https://doi.org/10.29130/dubited.789691
AMA Çelik A, Koç F. Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu. DÜBİTED. Ekim 2020;8(4):2491-2515. doi:10.29130/dubited.789691
Chicago Çelik, Ali, ve Fatih Koç. “Polikristal Tür Bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi Ve Deneysel Validasyonu”. Duzce University Journal of Science and Technology 8, sy. 4 (Ekim 2020): 2491-2515. https://doi.org/10.29130/dubited.789691.
EndNote Çelik A, Koç F (01 Ekim 2020) Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu. Duzce University Journal of Science and Technology 8 4 2491–2515.
IEEE A. Çelik ve F. Koç, “Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu”, DÜBİTED, c. 8, sy. 4, ss. 2491–2515, 2020, doi: 10.29130/dubited.789691.
ISNAD Çelik, Ali - Koç, Fatih. “Polikristal Tür Bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi Ve Deneysel Validasyonu”. Duzce University Journal of Science and Technology 8/4 (Ekim 2020), 2491-2515. https://doi.org/10.29130/dubited.789691.
JAMA Çelik A, Koç F. Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu. DÜBİTED. 2020;8:2491–2515.
MLA Çelik, Ali ve Fatih Koç. “Polikristal Tür Bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi Ve Deneysel Validasyonu”. Duzce University Journal of Science and Technology, c. 8, sy. 4, 2020, ss. 2491-15, doi:10.29130/dubited.789691.
Vancouver Çelik A, Koç F. Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Validasyonu. DÜBİTED. 2020;8(4):2491-515.