Araştırma Makalesi
BibTex RIS Kaynak Göster

3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi

Yıl 2022, , 275 - 284, 31.01.2022
https://doi.org/10.29130/dubited.905593

Öz

Bu çalışmanın amacı, 3B yazıcılarda ticari olarak kullanılan J-Head ekstrüder ve Volcano ekstrüderlerin ANSYS sonlu elemanlar yazılımı ile modellerin kararlı hal termal analizlerini gerçekleştirmek, modellerin eksiklikleri ve birbirlerine göre üstünlüklerini belirlemektir. Modellerin tasarımsal farklılıkları ve geometrik özellikleri farklı termal davranışlar göstermesine neden olmaktadır. Başlangıç koşulları ve sınır şartları her iki model için aynı olması sağlanmış, böylelikle diğer değişkenlerin sabit olmasına bağlı olarak tasarımların termal analizleri ön plana çıkarılmıştır. Termal analiz ile modellerin tasarımlarının baskı malzemesinin füzyonu üzerindeki etkileri incelenmiştir. Analiz sonuçları, modellerin avantaj ve dezavantajlarını ortaya koymuş ve gelecekte yapılabilecek yeni tasarımlar için bilgi kaynağı oluşturmuştur.

Kaynakça

  • [1] J. Butt, D. A. Onimowo, M. Gohrabian, T. Sharma, and H. Shirvani, “A desktop 3D printer with dual extruders to produce customised electronic circuitry,” Front. Mech. Eng., vol. 13, no. 4, pp. 528–534, 2018.
  • [2] H. Ji, X. Zhang, X. Huang, L. Zheng, X. Ye, and Y. Li, “Effect of extrusion on viscoelastic slurry 3D print quality: numerical analysis and experiment validation,” SN Appl. Sci., vol. 1, no. 9, pp. 1-11, 2019.
  • [3] J. D. Prince, “3D printing: an industrial revolution,” J. Electron. Resour. Med. Libr., vol. 11, no. 1, pp. 39–45, 2014.
  • [4] D. Altunkaynak, B. Duman, and K. Çetinkaya, “5 eksen 3B yazıcı tasarımı ve uygulaması,” Int. J. 3D Print. Technol. Digit. Ind., c. 4, s. 2, ss. 124–138, 2020.
  • [5] K. Szykiedans and W. Credo, “Mechanical properties of FDM and SLA low-cost 3D prints,” Procedia Eng., vol. 136, pp. 257–262, 2016.
  • [6] X. L. Ma, “Research on application of SLA technology in the 3D printing technology,” Appl. Mech. Mater., vol. 401–403, pp. 938–941, 2013.
  • [7] J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., vol. 124, pp. 143–157, 2017.
  • [8] Y. Song, Y. Li, W. Song, K. Yee, K. Y. Lee, and V. L. Tagarielli, “Measurements of the mechanical response of unidirectional 3D-printed PLA,” Mater. Des., vol. 123, pp. 154–164, 2017.
  • [9] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, 2018.
  • [10] C. McIlroy and P. D. Olmsted, “Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing,” Polymer (Guildf)., vol. 123, pp. 376–391, 2017.
  • [11] F. Peng, B. D. Vogt, and M. Cakmak, “Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing,” Addit. Manuf., vol. 22, no. May, pp. 197–206, 2018.
  • [12] R. Comminal, M. P. Serdeczny, D. B. Pedersen, and J. Spangenberg, “Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing,” Addit. Manuf., vol. 20, pp. 68–76, 2018.
  • [13] A. C. Abbott, G. P. Tandon, R. L. Bradford, H. Koerner, and J. W. Baur, “Process-structure-property effects on ABS bond strength in fused filament fabrication,” Addit. Manuf., vol. 19, pp. 29–38, 2018.
  • [14] R. Singh, G. Singh, J. Singh, and R. Kumar, “Investigations for tensile, compressive and morphological properties of 3D printed functional prototypes of PLA-PEKK-HAp-CS,” J. Thermoplast. Compos. Mater., vol. 34, no. 10, pp. 1408-1427, 2019.
  • [15] C. Bellehumeur, L. Li, Q. Sun, and P. Gu, “Modeling of bond formation between polymer filaments in the fused deposition modeling process,” J. Manuf. Process., vol. 6, no. 2, pp. 170–178, 2004.
  • [16] M. Pollák, J. Kaščak, M. Telišková, and J. Tkáč, “Design of the 3D printhead with extruder for the implementation of 3D printing from plastic and recycling by industrial robot,” TEM J., vol. 8, no. 3, pp. 709–713, 2019.
  • [17] Material Property Data. (May, 2021). Online Materials Information Dataset [Online]. Available: http://www.matweb.com/index.aspx

Performing Thermal Analysis of Different Types of Extruders Used in 3D Printers with ANSYS Program

Yıl 2022, , 275 - 284, 31.01.2022
https://doi.org/10.29130/dubited.905593

Öz

The aim of this study is to perform steady-state thermal analysis of the models of J-Head extruders and Volcano extruders used commercially in 3D printers with ANSYS finite element software and to determine the shortcomings of the models and their advantages over each other. The design differences and geometric features of the models cause them to exhibit different thermal behaviours. The initial conditions and boundary conditions were ensured to be the same for both models, thus the thermal analysis of the designs highlighted depending on the other variables being constant. The effects of the designs of the models on the fusion of the printing material were examined by thermal analysis. The results of the analysis revealed the advantages and disadvantages of the models and created a source of information for new designs that can be made in the future.

Kaynakça

  • [1] J. Butt, D. A. Onimowo, M. Gohrabian, T. Sharma, and H. Shirvani, “A desktop 3D printer with dual extruders to produce customised electronic circuitry,” Front. Mech. Eng., vol. 13, no. 4, pp. 528–534, 2018.
  • [2] H. Ji, X. Zhang, X. Huang, L. Zheng, X. Ye, and Y. Li, “Effect of extrusion on viscoelastic slurry 3D print quality: numerical analysis and experiment validation,” SN Appl. Sci., vol. 1, no. 9, pp. 1-11, 2019.
  • [3] J. D. Prince, “3D printing: an industrial revolution,” J. Electron. Resour. Med. Libr., vol. 11, no. 1, pp. 39–45, 2014.
  • [4] D. Altunkaynak, B. Duman, and K. Çetinkaya, “5 eksen 3B yazıcı tasarımı ve uygulaması,” Int. J. 3D Print. Technol. Digit. Ind., c. 4, s. 2, ss. 124–138, 2020.
  • [5] K. Szykiedans and W. Credo, “Mechanical properties of FDM and SLA low-cost 3D prints,” Procedia Eng., vol. 136, pp. 257–262, 2016.
  • [6] X. L. Ma, “Research on application of SLA technology in the 3D printing technology,” Appl. Mech. Mater., vol. 401–403, pp. 938–941, 2013.
  • [7] J. M. Chacón, M. A. Caminero, E. García-Plaza, and P. J. Núñez, “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection,” Mater. Des., vol. 124, pp. 143–157, 2017.
  • [8] Y. Song, Y. Li, W. Song, K. Yee, K. Y. Lee, and V. L. Tagarielli, “Measurements of the mechanical response of unidirectional 3D-printed PLA,” Mater. Des., vol. 123, pp. 154–164, 2017.
  • [9] J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, 2018.
  • [10] C. McIlroy and P. D. Olmsted, “Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing,” Polymer (Guildf)., vol. 123, pp. 376–391, 2017.
  • [11] F. Peng, B. D. Vogt, and M. Cakmak, “Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing,” Addit. Manuf., vol. 22, no. May, pp. 197–206, 2018.
  • [12] R. Comminal, M. P. Serdeczny, D. B. Pedersen, and J. Spangenberg, “Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing,” Addit. Manuf., vol. 20, pp. 68–76, 2018.
  • [13] A. C. Abbott, G. P. Tandon, R. L. Bradford, H. Koerner, and J. W. Baur, “Process-structure-property effects on ABS bond strength in fused filament fabrication,” Addit. Manuf., vol. 19, pp. 29–38, 2018.
  • [14] R. Singh, G. Singh, J. Singh, and R. Kumar, “Investigations for tensile, compressive and morphological properties of 3D printed functional prototypes of PLA-PEKK-HAp-CS,” J. Thermoplast. Compos. Mater., vol. 34, no. 10, pp. 1408-1427, 2019.
  • [15] C. Bellehumeur, L. Li, Q. Sun, and P. Gu, “Modeling of bond formation between polymer filaments in the fused deposition modeling process,” J. Manuf. Process., vol. 6, no. 2, pp. 170–178, 2004.
  • [16] M. Pollák, J. Kaščak, M. Telišková, and J. Tkáč, “Design of the 3D printhead with extruder for the implementation of 3D printing from plastic and recycling by industrial robot,” TEM J., vol. 8, no. 3, pp. 709–713, 2019.
  • [17] Material Property Data. (May, 2021). Online Materials Information Dataset [Online]. Available: http://www.matweb.com/index.aspx
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hasan Demir 0000-0001-5424-7242

Atıl Emre Coşgun 0000-0002-4889-300X

Yayımlanma Tarihi 31 Ocak 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Demir, H., & Coşgun, A. E. (2022). 3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi. Duzce University Journal of Science and Technology, 10(1), 275-284. https://doi.org/10.29130/dubited.905593
AMA Demir H, Coşgun AE. 3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi. DÜBİTED. Ocak 2022;10(1):275-284. doi:10.29130/dubited.905593
Chicago Demir, Hasan, ve Atıl Emre Coşgun. “3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı Ile Termal Analizlerinin Gerçekleştirilmesi”. Duzce University Journal of Science and Technology 10, sy. 1 (Ocak 2022): 275-84. https://doi.org/10.29130/dubited.905593.
EndNote Demir H, Coşgun AE (01 Ocak 2022) 3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi. Duzce University Journal of Science and Technology 10 1 275–284.
IEEE H. Demir ve A. E. Coşgun, “3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi”, DÜBİTED, c. 10, sy. 1, ss. 275–284, 2022, doi: 10.29130/dubited.905593.
ISNAD Demir, Hasan - Coşgun, Atıl Emre. “3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı Ile Termal Analizlerinin Gerçekleştirilmesi”. Duzce University Journal of Science and Technology 10/1 (Ocak 2022), 275-284. https://doi.org/10.29130/dubited.905593.
JAMA Demir H, Coşgun AE. 3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi. DÜBİTED. 2022;10:275–284.
MLA Demir, Hasan ve Atıl Emre Coşgun. “3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı Ile Termal Analizlerinin Gerçekleştirilmesi”. Duzce University Journal of Science and Technology, c. 10, sy. 1, 2022, ss. 275-84, doi:10.29130/dubited.905593.
Vancouver Demir H, Coşgun AE. 3B Yazıcılarda Kullanılan Farklı Tip Ekstüderlerin ANSYS Programı ile Termal Analizlerinin Gerçekleştirilmesi. DÜBİTED. 2022;10(1):275-84.