Araştırma Makalesi
BibTex RIS Kaynak Göster

Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu

Yıl 2023, Cilt: 11 Sayı: 1, 302 - 311, 31.01.2023

Öz

Son yıllarda toksik ve doğaya zarar veren kimyasallar yerine doğal materyaller kullanılarak çeşitli nano malzemelerin sentezi ilgi çekmektedir. Biyolojik sentez yöntemi doğal malzemeler kullanılarak uygulanan bir sentez yöntemidir. Biyolojik sentez ile doğaya zarar veren ve toksik kimyasallar yerine indirgeyici ajan ve stabilizör olarak doğal katkı maddeleri kullanılarak üretilen nano boyutlu tozlar biyomedikal, enerji depolama gibi farklı alanlarda kullanılmaktadır. Biyolojik yöntem ile sentezlenen nano partiküllerin diyotlarda kullanıldığında performansı nasıl etkileyeceği konusunda çalışmalar mevcut değildir. Bu çalışmada çinkooksit (ZnO) tozu hibiskus bitki ekstraktı kullanılarak biyolojik yöntemle sentezlenmiş ve ince film olarak p tipi silisyum altlık üzerine kaplanmıştır. Sentezlenen ZnO tozları XRD analizi ile incelenmiş hegzagonal wurtize formunda olduğu belirlenmiştir. Çalışmanın bir bölümü biyolojik sentez ile ZnO ince filmin kaplanmasına odaklanırken devamında elde edilen ZnO ince filmler silisyum nitrür (Si3N4) katkılanarak temel diyot parametrelerinden idealite faktörünün nasıl değiştiği incelenmiştir. Yapıya Si3N4 katkısı gerçekleştirilerek elektron deşik rekombinasyonunun azaltılması ve ara yüzey pasivizasyonunun artırılması amaçlanmıştır. Hazırlanan Si3N4 katkılı ZnO solüsyonu silisyum altlık yüzeyine 3000 devir/dakika dönme hızında 10 saniyede kaplanmıştır ve elde edilen ince filmler 400 ℃’de tavlanmıştır. Hazırlanan ince film kaplamaların elektriksel karakterizasyonunu belirlemek amacıyla alüminyum ohmik ve doğrultucu kontaklar fiziksel buhar biriktirme (PVD) ile kaplanmıştır. Daha sonra FESEM analizi ile diyotlar morfolojik olarak incelenerek kaplama kalınlığının ortalama 200 nm olduğu gözlemlenmiştir. Hazırlanan diyotlara Keithley 2400 cihazında karanlıkta akım-voltaj (I-V) analizi yapılmıştır. Elde edilen I-V analizinden Si3N4 katkılı ve katkısız diyotların idealite faktörleri sırasıyla 2,92 ve 4,17; doğrultma oranları ise 96,3 ve 10,8 olarak hesaplanmıştır.

Kaynakça

  • [1] H. Agarwal, S. Menon, V.K. Shanmugam’’Functionalization of zinc oxide nanoparticles using Mucuna pruriens and its antibacterial activity’’, Surf. Interfaces, 19, 2020.
  • [2] Y.A. Selim, M.A. Azb, I. Ragab, M.H.M. Abd El-Azim,’’ Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities,’’ Sci. Rep. 10, 1–9, 2020.
  • [3] R. Rajendhiran, V. Deivasigamani, J. Palanisamy, S.Masan, S. Pitchaiya, ‘‘Terminalia catappa and carissa carandas assisted synthesis of Tio2 nanoparticles – A green Synthesis approach’’, Materials Today:Proceedings, 2214-7853, 2020.
  • [4] S. Z. Mohammadi, B. Lashkari, A. Khosravan, ‘‘ Green synthesis of Co3O4 nanoparticles by using walnut green skin extract as a reducing agent by using response surface methodology’’, Surfaces and Interfaces, 2021.
  • [5] S. Abinaya, H. P.Kavitha, M.Prakash, A. Muthukrishnaraj, ‘‘ Green Synthesis of magnesium oxide nanoparticles and its applications:A rewiev’’ Sustainable Chemistry and Pharmacy,19, 100368, 2021.
  • [6] R. Resmi, J. Yoonus, B. Beena, ‘‘A novel greener synthesis of ZnO nanoparticles from Nilgiriantusciliantus leaf extract and evaluation of its biomedical applications’’, Materials Today: Proceedings, 2214-7853, 2021.
  • [7] Steven S. Kaye, Anne Dailly, Omar M. Yaghi, Jeffrey R. Long, ’’ Impact of preparation and handling on the hydrogen storage properties of Zn 4 O(1,4- benzenedicarboxylate) 3 (MOF-5) ’’, Chem. Soc., 46, 2007.
  • [8] N. Wiesmann, W. Tremel, J. Brieger ’’ Zinc oxide nanoparticles for therapeutic purposes in cancer medicine ’’, J. Mater. Chem. B, 8 (23), pp. 4973-4989, 2020.
  • [9] X.-Y. Wan, F.-L. Jiang, L. Chen, J. Pan, K. Zhou, K.-Z. Su, J.-D. Pang, G.-X. Lyu, M.- C. Hong, “Structural variability, unusual thermochromic luminescence and nitrobenzene sensing properties of five Zn(ii) coordination polymers assembled from a terphenyl-hexacarboxylate ligand”, Cryst. Eng. Comm 17, 3829–3837, 2015.
  • [10] Zhong, L. W., Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16, 829-858, 2004.
  • [11]E. Tóthová, M. Senna, A. Yermakov, J. Kováč, E. Dutková, M. Hegedüs, M. Kaňuchová, M. Baláž, Z.L. Bujňáková, J. Briančin, P. Makreski, ’’ Zn source-dependent magnetic properties of undoped ZnO nanoparticles frommechanochemically derived hydrozincite’’J. Alloy. Compd., pp. 1249-1259, 2019.
  • [12] A. Narjis, H. ElAakib, M. Boukendil, M. ElHasnaoui, L. Nkhaili, A. Aberkouks, A. Outzourhit, ’’Controlling the structural properties of pure and aluminum doped zinc oxide nanoparticles by annealing’’ J. King Saud Univ. Sci., 32, pp. 1074-1080, 2020.
  • [13] R.K. Das, V.L. Pachapur, L. Lonappan, M. Naghdi, R. Pulicharla, S. Maiti, S. Brar, Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects, Nanotechnol. Environ. Eng. 2017.
  • [14] Shabnam F., Mina J., Hassan K. F., ‘‘Green synthesis of zinc oxide nanoparticles: a comparison’’, Green Chemistry Letters and Reviews, 1751-8253, 2019.
  • [15] Minha N., Usman A, Bushra K., Bin C., ‘‘Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential’’, Nature,10:9055, 2020.
  • [16] Awwad, A., Albiss, B. & Ahmad, A. L., ‘‘Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europea leaf extract.”, Advanced Materials, 5, 520–524, 2014.
  • [17] Jittiporn R. , Jiraroj T-T., Nattanan P., T-Thienpraserta, ‘‘Green synthesized ZnO nanosheets from banana peel extract possess antibacterial activity and anti-cancer activity’’, Materials Today Communications, 101224, 2020.
  • [18] Blázquez O., López-Vidrier J., Hernández S., Montserrat J., Garrido B., “Electro-optical properties of non-stoichiometric silicon nitride films for photovoltaic applications”, Energy Procedia, 2013.
  • [19] Ichenko V. V., Marin V. V., Lin S. D., Panarn K. Y., Buyanin A. A. and Tretyak O. V., “Room temperature negative differential capacitance in self-assembled quantum dots”, J. Phys. D Appl. Phys., 41: 235107, 2008.
  • [20] Sakr G. B. and Yahia I. S., “Effect of illumination and frequency on the capacitance spectroscopy and the relaxation process of p-ZnTe/n-CdMnTe/GaAs magnetic diode for photocapacitance applications”, J. Alloys Compd., 503: 213-219, 2010.
  • [21] Lee, B.H., Kang, L., Nieh, R., Qi, W.J., Lee, J.C., “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing”, Applied Physics Letters, 76, 1926, 2000.
  • [22] N. Park, C. Choi, T. Seong, and S. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride” Phys. Rev. Lett. 86, 1355, 2001.
  • [23] R. Shashanka, D. Chaira, Optimization of milling parameters for the Synthesis of nano-structured duplex and ferritic stainless steel powders by high energy planetary milling, Powder Technol. 278, 35-45, 2015.
  • [24] Yuvakkumar R, Suresh J, Saravanakumar B, et al. ‘‘Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications.’’, Spectrochim Acta A Mol Biomol Spectrosc. 137:250–258, 2015.
  • [25] Gu H., Yu L.,Wang J., Yao J., Chen G., “A sol-gel preparation of ZnO/graphene composite with enhanced electronic properties’’, Materials Letters, V: 196, P: 168-171, 2017.
  • [26] Fesenko O., Dovbeshko G., Dementjev A., Karpicz R., Kaplas T., and Svirko Y., “Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene,” Nanoscale Res. Lett., 2015.
  • [27] Soldano C., Mahmood A., and Dujardin E., “Production, properties and potential of graphene,” Carbon., V: 48, P: 2127-2150, 2010.
  • [28] Pür, F., Z., “Au/Si3N4/n-Si (MIS) Yapıların Akım-Voltaj (I-V) Karakteristiklerinin İncelenmesi”, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, 2012.
  • [29] S. Mridha, M. Dutta, Durga Basak, “Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet/visible lights: thickness dependent behavior”, Mater Sci: Mater Electron, 20:S376–S379, 2009.
  • [30] Güçlü, Ç., Ş., Özdemir, A., F., Aldemir, D., A., “Mo/n-Si Schottky Diyotların Akım-Voltaj ve Kapasite-Voltaj Karakteristiklerinin Analizi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7, 2142-2155, 2019.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erhan İbrahimoğlu 0000-0002-8073-5570

Fatih Çalışkan 0000-0002-9568-7049

Zafer Tatlı 0000-0002-0981-7143

Yayımlanma Tarihi 31 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA İbrahimoğlu, E., Çalışkan, F., & Tatlı, Z. (2023). Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu. Duzce University Journal of Science and Technology, 11(1), 302-311.
AMA İbrahimoğlu E, Çalışkan F, Tatlı Z. Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu. DÜBİTED. Ocak 2023;11(1):302-311.
Chicago İbrahimoğlu, Erhan, Fatih Çalışkan, ve Zafer Tatlı. “Al/Si3N4:ZnO/PSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu”. Duzce University Journal of Science and Technology 11, sy. 1 (Ocak 2023): 302-11.
EndNote İbrahimoğlu E, Çalışkan F, Tatlı Z (01 Ocak 2023) Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu. Duzce University Journal of Science and Technology 11 1 302–311.
IEEE E. İbrahimoğlu, F. Çalışkan, ve Z. Tatlı, “Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu”, DÜBİTED, c. 11, sy. 1, ss. 302–311, 2023.
ISNAD İbrahimoğlu, Erhan vd. “Al/Si3N4:ZnO/PSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu”. Duzce University Journal of Science and Technology 11/1 (Ocak 2023), 302-311.
JAMA İbrahimoğlu E, Çalışkan F, Tatlı Z. Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu. DÜBİTED. 2023;11:302–311.
MLA İbrahimoğlu, Erhan vd. “Al/Si3N4:ZnO/PSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu”. Duzce University Journal of Science and Technology, c. 11, sy. 1, 2023, ss. 302-11.
Vancouver İbrahimoğlu E, Çalışkan F, Tatlı Z. Al/Si3N4:ZnO/pSi/Al Schottky Diyotların Akım-Voltaj Karakterizasyonu. DÜBİTED. 2023;11(1):302-11.