Research Article
BibTex RIS Cite

Yüzey Modifiye Edilmiş Bakır Sülfür Nanopartiküllerinin Tribolojik Davranışlarının İncelemesi

Year 2025, Volume: 13 Issue: 4, 1719 - 1731, 30.10.2025
https://doi.org/10.29130/dubited.1735151

Abstract

Günümüzde, çeşitli alanlardaki teknolojideki ilerlemeler, hem makinelerde hem de araçlarda kullanılan makine bileşenlerinin kalitesini, dayanıklılığını ve performansını artırmaktadır. Bu değişim süreci, uzun süre temas halinde olan parçaların yüksek basınçlara ve sıcaklıklar koşullarına dayanabilmesini gerektirmektedir. Çözümlerden biri olarak, yağlayıcı ve yağ performans arttırıcı nano yağlayıcı katkı maddelerinin kullanımına olan talep artmaktadır. Bu çalışmada, solvotermal bir yöntem kullanarak CuS ve Tween 80 (TW) kaplı CuS nanopartiküllerini (NP'ler) kükürt içeren yağlayıcı katkı maddeleri olarak sentezlenmiştir. Hem yüzeyi modifiye edilmemiş CuS hem de yüzeyi TW kaplı CuS NP'lerinin parçacık boyutlarının küresel olduğu ve boyutlarının 15 nm'den küçük olduğu belirlendi. Baz yağ ile karşılaştırıldığında, %0,05 (ağırlıkça) konsantrasyonda yüzeyi modifiye edilmemiş CuS NP'lerinin eklenmesi, test pimlerinin kütle kaybını en az %50,2 oranında azalttı. Ancak, TW kaplı CuS NP'ler kullanıldığında %32,4'e kadar bir aşınma azalması sağlanmıştır.

References

  • Abud Ali, Z. A. A., Takhakh, A. M., & Al-Waily, M. (2022). A review of use of nanoparticle additives in lubricants to improve its tribological properties. Materials Today: Proceedings, 52, 1442-1450. https://doi.org/10.1016/j.matpr.2021.11.193
  • Adetunla, A., Afolalu, S., Jen, T.-C., & Ogundana, A. (2023, June). The roles of surfactant in tribology applications of recent technology: An overview. E3S Web Conferences, 391, Article 01021. https://doi.org/10.1051/e3sconf/202339101021
  • Ain, N. U., Nasir, J. A., Khan, Z., Butler, I. S., & Rehman, Z. (2022). Copper sulfide nanostructures: Synthesis and biological applications. Rsc Advances, 12(12), 7550-7567. https://doi.org/10.1039/D1RA08414C
  • Chen, L., & Zhu, D. (2017). Preparation and tribological properties of unmodified and oleic acid-modified CuS nanorods as lubricating oil additives. Ceramics International, 43(5), 4246-4251. https://doi.org/10.1016/j.ceramint.2016.12.066
  • Chimeno-Trinchet, C., Fernández-González, A., García Calzón, J. Á., Díaz-García, M. E., & Badía Laíño, R. (2019). Alkyl-capped copper oxide nanospheres and nanoprolates for sustainability: Water treatment and improved lubricating performance. Science and Technology of Advanced Materials, 20(1), 657-672. https://doi.org/10.1080/14686996.2019.1621683
  • Gu, C. (2018). Modifying the lubricating and tribological properties via introducing the oleic acid in CuS nanomaterials for vehicle. Optics & Laser Technology, 108, 1-6. https://doi.org/10.1016/j.optlastec.2018.06.035
  • Hua, K., Yu, H., Zuo, X., Zhou, F., & Zhang, X. (2024). CuS nanoparticles capped with MPEGOCS2K for applications as lubricants and antiwear additives. ACS Applied Nano Materials, 7(17), 20454-20463. https://doi.org/10.1021/acsanm.4c03457
  • Hutchings, I., & Shipway, P. (2017). Tribology: Friction and wear of engineering materials (2nd ed.). Butterworth-Heinemann.
  • Ishikawa, S., Sato, T., Saitoh, K., Takuma, M., & Takahashi, Y. (2019). Fundamental study on functionality of synthetic sulfides: Evaluation of metal sulfides as solid lubricant. Jurnal Tribologi, 20, 26-38.
  • Jain, A. K., Kumar, M., & Thakre, G. D. (2021). Potential of CuS and CuO nanoparticles for friction reduction in piston ring–liner contact. Tribology: Materials, Surfaces & Interfaces, 15(4), 278-291. https://doi.org/10.1080/17515831.2020.1871244
  • Jason, Y. J. J., How, H. G., Teoh, Y. H., & Chuah, H. G. (2020). A Study on the Tribological Performance of Nanolubricants. Processes, 8(11), 1-33. https://doi.org/10.3390/pr8111372
  • Jiang, Z., Wang, Z., Qiao, C., Wang, Y., Zhang, S., Zhang, Y., Zhang, R., & Li, W. (2025). Friction reduction and antiwear mechanisms of cerium sulfide nanosheets under different sliding conditions. Langmuir, 41(4), 2492-2505. https://doi.org/10.1021/acs.langmuir.4c04231
  • Kang, X., Wang, B., Zhu, L., & Zhu, H. (2008). Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear, 265(1), 150-154. https://doi.org/10.1016/j.wear.2007.09.009
  • Khan, Y., Durrani, S. K., Mehmood, M., Ahmad, J., Khan, M. R., & Firdous, S. (2010). Low temperature synthesis of fluorescent ZnO nanoparticles. Applied Surface Science, 257(5), 1756-1761. https://doi.org/10.1016/j.apsusc.2010.09.011
  • Kovacı, H., Akaltun, Y., Yetim, A. F., Uzun, Y., & Çelik, A. (2018). Investigation of the usage possibility of CuO and CuS thin films produced by successive ionic layer adsorption and reaction (SILAR) as solid lubricant. Surface and Coatings Technology, 344, 522-527. https://doi.org/10.1016/j.surfcoat.2018.03.077
  • Kumar, R., Torres, H., Aydinyan, S., Antonov, M., Varga, M., Hussainova, I., & Rodriguez Ripoll, M. (2023). Tribological behavior of Ni-based self-lubricating claddings containing sulfide of nickel, copper, or bismuth at temperatures up to 600 °C. Surface and Coatings Technology, 456, Article 129270. https://doi.org/10.1016/j.surfcoat.2023.129270
  • Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M., & Sharma, S. (2022). Extreme pressure and antiwear additives for lubricant: Academic insights and perspectives. The International Journal of Advanced Manufacturing Technology, 120(1), 1-27. https://doi.org/10.1007/s00170-021-08614-x
  • Liu, C., Friedman, O., Li, Y., Li, S., Tian, Y., Golan, Y., & Meng, Y. (2019). Electric response of CuS nanoparticle lubricant additives: The effect of crystalline and amorphous octadecylamine surfactant capping layers. Langmuir, 35(48), 15825-15833. https://doi.org/10.1021/acs.langmuir.9b01714
  • Liu, C., Friedman, O., Meng, Y., Tian, Y., & Golan, Y. (2018). CuS nanoparticle additives for enhanced ester lubricant performance. ACS Applied Nano Materials, 1(12), 7060-7065. https://doi.org/10.1021/acsanm.8b01632
  • Liu, C., Yu, J., Lv, J., & Liu, S. (2025). The spherical WS2 nano lubricating additive designed to reduce the frictional fluctuations on the onset of friction. Materials Today Communications, 42(9), Article 111588. https://doi.org/10.1016/j.mtcomm.2025.111588
  • Ludema, K. C. (1996). Friction, wear, lubrication: A textbook in tribology (1st ed.). CRC Press. https://doi.org/10.1201/9781439821893
  • Ma, Y., Wan, H., Ye, Y., Chen, L., Li, H., Zhou, H., & Chen, J. (2020). In-situ synthesis of size-tunable silver sulfide nanoparticles to improve tribological properties of the polytetrafluoroethylene-based nanocomposite lubricating coatings. Tribology International, 148, Article 106324. https://doi.org/10.1016/j.triboint.2020.106324
  • Minami, I. (2017). Molecular science of lubricant additives. Applied Sciences, 7(5), Article 445. https://doi.org/10.3390/app7050445
  • Murshed, S. M. S., & Estellé, P. (2017). A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 76, 1134-1152. https://doi.org/10.1016/j.rser.2017.03.113
  • Nagarajan, T., Sridewi, N., Abdullah, N., Walvekar, R., Shahabuddin, S., & Khalid, M. (2024). Investigating the age-dependent behavior of MoS2-hBN nanohybrid additives on the rheological properties of diesel engine oil. Journal of Molecular Liquids, 401, Article 124626. https://doi.org/10.1016/j.molliq.2024.124626
  • Nyholm, N., & Espallargas, N. (2023). Functionalized carbon nanostructures as lubricant additives – A review. Carbon, 201, 1200-1228. https://doi.org/10.1016/j.carbon.2022.10.035
  • Özakın, B., Gültekin, K., & Uğuz, G. (2025a). Investigation of the effect of particle size on dispersion stability and viscosity in kaolin particles-doped bio-based palm nanolubricants. Arabian Journal for Science and Engineering, 50(6), 4223-4241. https://doi.org/10.1007/s13369-024-09664-5
  • Özakın, B., Gültekin, K., & Yurdgülü, H. İ. (2025b). Improvement of oxidation stability, hydrolytic stability and tribological properties of kaolin particles doped bio-based green palm oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 712, Article 136441. https://doi.org/10.1016/j.colsurfa.2025.136441
  • Pakharukov, Y., Shabiev, F., Safargaliev, R., Mavrinskii, V., Vasiljev, S., Ezdin, B., Grigoriev, B., & Salihov, R. (2022). The mechanism of oil viscosity reduction with the addition of graphene nanoparticles. Journal of Molecular Liquids, 361(4), Article 119551. https://doi.org/10.1016/j.molliq.2022.119551
  • Pawar, R. V., Hulwan, D. B., & Mandale, M. B. (2022). Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. Journal of Cleaner Production, 378, Article 134454. https://doi.org/10.1016/j.jclepro.2022.134454
  • Perevyazko, I., Vollrath, A., Hornig, S., Pavlov, G. M., & Schubert, U. S. (2010). Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. Journal of Polymer Science Part A: Polymer Chemistry, 48(18), 3924-3931. https://doi.org/10.1002/pola.24157
  • Qin, J.-H., Liu, Z.-Q., Li, N., Chen, Y.-B., & Wang, D.-Y. (2017). A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity. Journal of Nanoparticle Research, 19(2), Article 40. https://doi.org/10.1007/s11051-017-3743-8
  • Rabkin, A., Friedman, O., & Golan, Y. (2015). Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: Role of the structure of the capping agent. Journal of Colloid and Interface Science, 457, 43-51. https://doi.org/10.1016/j.jcis.2015.06.044
  • Raina, A., Irfan Ul Haq, M., Anand, A., & Sudhanraj, J. (2021). Lubrication characteristics of oils containing nanoadditives: Influencing parameters, market scenario and advancements. Journal of The Institution of Engineers (India): Series D, 102(2), 575-587. https://doi.org/10.1007/s40033-021-00272-3
  • Raj, S. I., Jaiswal, A., & Uddin, I. (2020). Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions. RSC Advances, 10(24), 14050-14059. https://doi.org/10.1039/C9RA09306K
  • Roy, P., & Srivastava, S. K. (2015). Nanostructured copper sulfides: Synthesis, properties and applications. CrystEngComm, 17(41), 7801-7815. https://doi.org/10.1039/C5CE01304F
  • Sentis, M. P. L., Feltin, N., Lambeng, N., Lemahieu, G., Brambilla, G., Meunier, G., & Chivas-Joly, C. (2024). Investigation of nanoparticle dispersibility and stability based on TiO2 analysis by SMLS, DLS, and SEM. Journal of Nanoparticle Research, 26(3), Article 55. https://doi.org/10.1007/s11051-024-05959-8
  • Shahnazar, S., Bagheri, S., & Abd Hamid, S. B. (2016). Enhancing lubricant properties by nanoparticle additives. International Journal of Hydrogen Energy, 41(4), 3153-3170. https://doi.org/10.1016/j.ijhydene.2015.12.040
  • Shamraiz, U., Hussain, R. A., & Badshah, A. (2016). Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry, 238, 25-40. https://doi.org/10.1016/j.jssc.2016.02.046
  • Tang, Z., & Li, S. (2014). A review of recent developments of friction modifiers for liquid lubricants (2007–present). Current Opinion in Solid State and Materials Science, 18(3), 119-139. https://doi.org/10.1016/j.cossms.2014.02.002
  • Thampi, A. D., Prasanth, M., Anandu, A., Sneha, E., Sasidharan, B., & Rani, S. (2021). The effect of nanoparticle additives on the tribological properties of various lubricating oils–review. Materials Today: Proceedings, 47(15), 4919-4924. https://doi.org/10.1016/j.matpr.2021.03.664
  • Totten, G. E. (2006). Handbook of lubrication and tribology: Volume I—Application and maintenance (2nd ed.). CRC Press.
  • Uflyand, I. E., Zhinzhilo, V. A., & Burlakova, V. E. (2019). Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction, 7(2), 93-116. https://doi.org/10.1007/s40544-019-0261-y
  • Uğur, A., & Avan, İ. (2023). Investigation of 1-octanethiol capped ZnS nanoparticles as lubricant additives and tribological behavior of oil-based nanolubricant. Wear, 530-531, Article 205029. https://doi.org/10.1016/j.wear.2023.205029
  • Uğur, A., & Avan, İ. (2024). Anti-wear behavior of 1-octanethiol and tween-80 capped ZnO nanoparticles as lubricating oil additives. Surfaces and Interfaces, 46, Article 104018. https://doi.org/10.1016/j.surfin.2024.104018
  • Wang, B., Qiu, F., Barber, G. C., Zou, Q., Wang, J., Guo, S., Yuan, Y., & Jiang, Q. (2022). Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear, 490-491(11), Article 204206. https://doi.org/10.1016/j.wear.2021.204206
  • Wang, H., Xu, B., & Liu, J. (2012). Micron and nano ZnS solid lubrication film. In H. Wang, B. Xu, & J. Liu (Eds.), Micro and Nano Sulfide Solid Lubrication (pp. 291-303). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23102-5
  • Wang, J., Zhuang, W., Liang, W., Yan, T., Li, T., Zhang, L., & Li, S. (2022). Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction, 10(5), 645-676. https://doi.org/10.1007/s40544-021-0511-7
  • Wang, S., Chen, D., Hong, Q., Gui, Y., Cao, Y., Ren, G., & Liang, Z. (2023). Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A review. Journal of Molecular Liquids, 389, Article 122821. https://doi.org/10.1016/j.molliq.2023.122821
  • Wang, W., & Qu, J. (2025). Current and candidate additives for environmentally acceptable lubricants - a review. Friction, 13(4), Article 9440988. https://doi.org/10.26599/FRICT.2025.9440988
  • Xi, Z., Wan, H., Ma, Y., Wu, Y., Chen, L., Li, H., Zhou, H., Chen, J., & Hou, G. (2021). In-situ synthesis of Cu2S nanoparticles to consolidate the tribological performance of PAI-PTFE bonded solid lubricating coatings. Progress in Organic Coatings, 154, Article 106197. https://doi.org/10.1016/j.porgcoat.2021.106197
  • Yadav, S., Shrivas, K., & Bajpai, P. K. (2019). Role of precursors in controlling the size, shape and morphology in the synthesis of copper sulfide nanoparticles and their application for fluorescence detection. Journal of Alloys and Compounds, 772, 579-592. https://doi.org/10.1016/j.jallcom.2018.08.132
  • Zhang, N., Zhuang, D.-M., Liu, J.-J., Li, B., Tao, K., Fang, X.-D., & Guan, M.-X. (2000). Microstructure of iron sulfide layer as solid lubrication coating produced by low-temperature ion sulfurization. Surface and Coatings Technology, 132(1), 1-5. https://doi.org/10.1016/S0257-8972(99)00661-1

Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles

Year 2025, Volume: 13 Issue: 4, 1719 - 1731, 30.10.2025
https://doi.org/10.29130/dubited.1735151

Abstract

Today, advancements in technology across various fields are enhancing the quality, durability, and performance of machine components used in both machinery and vehicles. This evolution necessitates that parts in contact for extended periods can withstand high pressures and temperatures. Lubrication is one of the solutions. Thus, the demand for nano-lubricant additives is rising to improve the performance of lubricants and oils. In this study, bare CuS and Tween 80 (TW)-capped CuS nanoparticles (NPs) were synthesized as sulfur-containing lubricant additives using a solvothermal method. The particle sizes of both bare CuS and TW-capped CuS NPs were determined to be spherical, with sizes less than 15 nm. The addition of bare CuS NPs to 5W-30 base oil at a concentration of 0.05 (wt.%) reduced the wear rate by 50.2%, while TW-coated CuS NPs reduced the wear by 32.4%, compared to the base oil under high load level.

Ethical Statement

This study does not involve human or animal participants. All procedures followed scientific and ethical principles, and all referenced studies are appropriately cited.

Thanks

The author expresses gratitude to İ. Avan and M. Candan for allowing the use of their research laboratory equipment

References

  • Abud Ali, Z. A. A., Takhakh, A. M., & Al-Waily, M. (2022). A review of use of nanoparticle additives in lubricants to improve its tribological properties. Materials Today: Proceedings, 52, 1442-1450. https://doi.org/10.1016/j.matpr.2021.11.193
  • Adetunla, A., Afolalu, S., Jen, T.-C., & Ogundana, A. (2023, June). The roles of surfactant in tribology applications of recent technology: An overview. E3S Web Conferences, 391, Article 01021. https://doi.org/10.1051/e3sconf/202339101021
  • Ain, N. U., Nasir, J. A., Khan, Z., Butler, I. S., & Rehman, Z. (2022). Copper sulfide nanostructures: Synthesis and biological applications. Rsc Advances, 12(12), 7550-7567. https://doi.org/10.1039/D1RA08414C
  • Chen, L., & Zhu, D. (2017). Preparation and tribological properties of unmodified and oleic acid-modified CuS nanorods as lubricating oil additives. Ceramics International, 43(5), 4246-4251. https://doi.org/10.1016/j.ceramint.2016.12.066
  • Chimeno-Trinchet, C., Fernández-González, A., García Calzón, J. Á., Díaz-García, M. E., & Badía Laíño, R. (2019). Alkyl-capped copper oxide nanospheres and nanoprolates for sustainability: Water treatment and improved lubricating performance. Science and Technology of Advanced Materials, 20(1), 657-672. https://doi.org/10.1080/14686996.2019.1621683
  • Gu, C. (2018). Modifying the lubricating and tribological properties via introducing the oleic acid in CuS nanomaterials for vehicle. Optics & Laser Technology, 108, 1-6. https://doi.org/10.1016/j.optlastec.2018.06.035
  • Hua, K., Yu, H., Zuo, X., Zhou, F., & Zhang, X. (2024). CuS nanoparticles capped with MPEGOCS2K for applications as lubricants and antiwear additives. ACS Applied Nano Materials, 7(17), 20454-20463. https://doi.org/10.1021/acsanm.4c03457
  • Hutchings, I., & Shipway, P. (2017). Tribology: Friction and wear of engineering materials (2nd ed.). Butterworth-Heinemann.
  • Ishikawa, S., Sato, T., Saitoh, K., Takuma, M., & Takahashi, Y. (2019). Fundamental study on functionality of synthetic sulfides: Evaluation of metal sulfides as solid lubricant. Jurnal Tribologi, 20, 26-38.
  • Jain, A. K., Kumar, M., & Thakre, G. D. (2021). Potential of CuS and CuO nanoparticles for friction reduction in piston ring–liner contact. Tribology: Materials, Surfaces & Interfaces, 15(4), 278-291. https://doi.org/10.1080/17515831.2020.1871244
  • Jason, Y. J. J., How, H. G., Teoh, Y. H., & Chuah, H. G. (2020). A Study on the Tribological Performance of Nanolubricants. Processes, 8(11), 1-33. https://doi.org/10.3390/pr8111372
  • Jiang, Z., Wang, Z., Qiao, C., Wang, Y., Zhang, S., Zhang, Y., Zhang, R., & Li, W. (2025). Friction reduction and antiwear mechanisms of cerium sulfide nanosheets under different sliding conditions. Langmuir, 41(4), 2492-2505. https://doi.org/10.1021/acs.langmuir.4c04231
  • Kang, X., Wang, B., Zhu, L., & Zhu, H. (2008). Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear, 265(1), 150-154. https://doi.org/10.1016/j.wear.2007.09.009
  • Khan, Y., Durrani, S. K., Mehmood, M., Ahmad, J., Khan, M. R., & Firdous, S. (2010). Low temperature synthesis of fluorescent ZnO nanoparticles. Applied Surface Science, 257(5), 1756-1761. https://doi.org/10.1016/j.apsusc.2010.09.011
  • Kovacı, H., Akaltun, Y., Yetim, A. F., Uzun, Y., & Çelik, A. (2018). Investigation of the usage possibility of CuO and CuS thin films produced by successive ionic layer adsorption and reaction (SILAR) as solid lubricant. Surface and Coatings Technology, 344, 522-527. https://doi.org/10.1016/j.surfcoat.2018.03.077
  • Kumar, R., Torres, H., Aydinyan, S., Antonov, M., Varga, M., Hussainova, I., & Rodriguez Ripoll, M. (2023). Tribological behavior of Ni-based self-lubricating claddings containing sulfide of nickel, copper, or bismuth at temperatures up to 600 °C. Surface and Coatings Technology, 456, Article 129270. https://doi.org/10.1016/j.surfcoat.2023.129270
  • Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M., & Sharma, S. (2022). Extreme pressure and antiwear additives for lubricant: Academic insights and perspectives. The International Journal of Advanced Manufacturing Technology, 120(1), 1-27. https://doi.org/10.1007/s00170-021-08614-x
  • Liu, C., Friedman, O., Li, Y., Li, S., Tian, Y., Golan, Y., & Meng, Y. (2019). Electric response of CuS nanoparticle lubricant additives: The effect of crystalline and amorphous octadecylamine surfactant capping layers. Langmuir, 35(48), 15825-15833. https://doi.org/10.1021/acs.langmuir.9b01714
  • Liu, C., Friedman, O., Meng, Y., Tian, Y., & Golan, Y. (2018). CuS nanoparticle additives for enhanced ester lubricant performance. ACS Applied Nano Materials, 1(12), 7060-7065. https://doi.org/10.1021/acsanm.8b01632
  • Liu, C., Yu, J., Lv, J., & Liu, S. (2025). The spherical WS2 nano lubricating additive designed to reduce the frictional fluctuations on the onset of friction. Materials Today Communications, 42(9), Article 111588. https://doi.org/10.1016/j.mtcomm.2025.111588
  • Ludema, K. C. (1996). Friction, wear, lubrication: A textbook in tribology (1st ed.). CRC Press. https://doi.org/10.1201/9781439821893
  • Ma, Y., Wan, H., Ye, Y., Chen, L., Li, H., Zhou, H., & Chen, J. (2020). In-situ synthesis of size-tunable silver sulfide nanoparticles to improve tribological properties of the polytetrafluoroethylene-based nanocomposite lubricating coatings. Tribology International, 148, Article 106324. https://doi.org/10.1016/j.triboint.2020.106324
  • Minami, I. (2017). Molecular science of lubricant additives. Applied Sciences, 7(5), Article 445. https://doi.org/10.3390/app7050445
  • Murshed, S. M. S., & Estellé, P. (2017). A state of the art review on viscosity of nanofluids. Renewable and Sustainable Energy Reviews, 76, 1134-1152. https://doi.org/10.1016/j.rser.2017.03.113
  • Nagarajan, T., Sridewi, N., Abdullah, N., Walvekar, R., Shahabuddin, S., & Khalid, M. (2024). Investigating the age-dependent behavior of MoS2-hBN nanohybrid additives on the rheological properties of diesel engine oil. Journal of Molecular Liquids, 401, Article 124626. https://doi.org/10.1016/j.molliq.2024.124626
  • Nyholm, N., & Espallargas, N. (2023). Functionalized carbon nanostructures as lubricant additives – A review. Carbon, 201, 1200-1228. https://doi.org/10.1016/j.carbon.2022.10.035
  • Özakın, B., Gültekin, K., & Uğuz, G. (2025a). Investigation of the effect of particle size on dispersion stability and viscosity in kaolin particles-doped bio-based palm nanolubricants. Arabian Journal for Science and Engineering, 50(6), 4223-4241. https://doi.org/10.1007/s13369-024-09664-5
  • Özakın, B., Gültekin, K., & Yurdgülü, H. İ. (2025b). Improvement of oxidation stability, hydrolytic stability and tribological properties of kaolin particles doped bio-based green palm oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 712, Article 136441. https://doi.org/10.1016/j.colsurfa.2025.136441
  • Pakharukov, Y., Shabiev, F., Safargaliev, R., Mavrinskii, V., Vasiljev, S., Ezdin, B., Grigoriev, B., & Salihov, R. (2022). The mechanism of oil viscosity reduction with the addition of graphene nanoparticles. Journal of Molecular Liquids, 361(4), Article 119551. https://doi.org/10.1016/j.molliq.2022.119551
  • Pawar, R. V., Hulwan, D. B., & Mandale, M. B. (2022). Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. Journal of Cleaner Production, 378, Article 134454. https://doi.org/10.1016/j.jclepro.2022.134454
  • Perevyazko, I., Vollrath, A., Hornig, S., Pavlov, G. M., & Schubert, U. S. (2010). Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. Journal of Polymer Science Part A: Polymer Chemistry, 48(18), 3924-3931. https://doi.org/10.1002/pola.24157
  • Qin, J.-H., Liu, Z.-Q., Li, N., Chen, Y.-B., & Wang, D.-Y. (2017). A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity. Journal of Nanoparticle Research, 19(2), Article 40. https://doi.org/10.1007/s11051-017-3743-8
  • Rabkin, A., Friedman, O., & Golan, Y. (2015). Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: Role of the structure of the capping agent. Journal of Colloid and Interface Science, 457, 43-51. https://doi.org/10.1016/j.jcis.2015.06.044
  • Raina, A., Irfan Ul Haq, M., Anand, A., & Sudhanraj, J. (2021). Lubrication characteristics of oils containing nanoadditives: Influencing parameters, market scenario and advancements. Journal of The Institution of Engineers (India): Series D, 102(2), 575-587. https://doi.org/10.1007/s40033-021-00272-3
  • Raj, S. I., Jaiswal, A., & Uddin, I. (2020). Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions. RSC Advances, 10(24), 14050-14059. https://doi.org/10.1039/C9RA09306K
  • Roy, P., & Srivastava, S. K. (2015). Nanostructured copper sulfides: Synthesis, properties and applications. CrystEngComm, 17(41), 7801-7815. https://doi.org/10.1039/C5CE01304F
  • Sentis, M. P. L., Feltin, N., Lambeng, N., Lemahieu, G., Brambilla, G., Meunier, G., & Chivas-Joly, C. (2024). Investigation of nanoparticle dispersibility and stability based on TiO2 analysis by SMLS, DLS, and SEM. Journal of Nanoparticle Research, 26(3), Article 55. https://doi.org/10.1007/s11051-024-05959-8
  • Shahnazar, S., Bagheri, S., & Abd Hamid, S. B. (2016). Enhancing lubricant properties by nanoparticle additives. International Journal of Hydrogen Energy, 41(4), 3153-3170. https://doi.org/10.1016/j.ijhydene.2015.12.040
  • Shamraiz, U., Hussain, R. A., & Badshah, A. (2016). Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry, 238, 25-40. https://doi.org/10.1016/j.jssc.2016.02.046
  • Tang, Z., & Li, S. (2014). A review of recent developments of friction modifiers for liquid lubricants (2007–present). Current Opinion in Solid State and Materials Science, 18(3), 119-139. https://doi.org/10.1016/j.cossms.2014.02.002
  • Thampi, A. D., Prasanth, M., Anandu, A., Sneha, E., Sasidharan, B., & Rani, S. (2021). The effect of nanoparticle additives on the tribological properties of various lubricating oils–review. Materials Today: Proceedings, 47(15), 4919-4924. https://doi.org/10.1016/j.matpr.2021.03.664
  • Totten, G. E. (2006). Handbook of lubrication and tribology: Volume I—Application and maintenance (2nd ed.). CRC Press.
  • Uflyand, I. E., Zhinzhilo, V. A., & Burlakova, V. E. (2019). Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction, 7(2), 93-116. https://doi.org/10.1007/s40544-019-0261-y
  • Uğur, A., & Avan, İ. (2023). Investigation of 1-octanethiol capped ZnS nanoparticles as lubricant additives and tribological behavior of oil-based nanolubricant. Wear, 530-531, Article 205029. https://doi.org/10.1016/j.wear.2023.205029
  • Uğur, A., & Avan, İ. (2024). Anti-wear behavior of 1-octanethiol and tween-80 capped ZnO nanoparticles as lubricating oil additives. Surfaces and Interfaces, 46, Article 104018. https://doi.org/10.1016/j.surfin.2024.104018
  • Wang, B., Qiu, F., Barber, G. C., Zou, Q., Wang, J., Guo, S., Yuan, Y., & Jiang, Q. (2022). Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear, 490-491(11), Article 204206. https://doi.org/10.1016/j.wear.2021.204206
  • Wang, H., Xu, B., & Liu, J. (2012). Micron and nano ZnS solid lubrication film. In H. Wang, B. Xu, & J. Liu (Eds.), Micro and Nano Sulfide Solid Lubrication (pp. 291-303). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23102-5
  • Wang, J., Zhuang, W., Liang, W., Yan, T., Li, T., Zhang, L., & Li, S. (2022). Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction, 10(5), 645-676. https://doi.org/10.1007/s40544-021-0511-7
  • Wang, S., Chen, D., Hong, Q., Gui, Y., Cao, Y., Ren, G., & Liang, Z. (2023). Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A review. Journal of Molecular Liquids, 389, Article 122821. https://doi.org/10.1016/j.molliq.2023.122821
  • Wang, W., & Qu, J. (2025). Current and candidate additives for environmentally acceptable lubricants - a review. Friction, 13(4), Article 9440988. https://doi.org/10.26599/FRICT.2025.9440988
  • Xi, Z., Wan, H., Ma, Y., Wu, Y., Chen, L., Li, H., Zhou, H., Chen, J., & Hou, G. (2021). In-situ synthesis of Cu2S nanoparticles to consolidate the tribological performance of PAI-PTFE bonded solid lubricating coatings. Progress in Organic Coatings, 154, Article 106197. https://doi.org/10.1016/j.porgcoat.2021.106197
  • Yadav, S., Shrivas, K., & Bajpai, P. K. (2019). Role of precursors in controlling the size, shape and morphology in the synthesis of copper sulfide nanoparticles and their application for fluorescence detection. Journal of Alloys and Compounds, 772, 579-592. https://doi.org/10.1016/j.jallcom.2018.08.132
  • Zhang, N., Zhuang, D.-M., Liu, J.-J., Li, B., Tao, K., Fang, X.-D., & Guan, M.-X. (2000). Microstructure of iron sulfide layer as solid lubrication coating produced by low-temperature ion sulfurization. Surface and Coatings Technology, 132(1), 1-5. https://doi.org/10.1016/S0257-8972(99)00661-1
There are 53 citations in total.

Details

Primary Language English
Subjects Tribology
Journal Section Articles
Authors

Alper Uğur 0000-0002-8310-8839

Publication Date October 30, 2025
Submission Date July 5, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Uğur, A. (2025). Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles. Duzce University Journal of Science and Technology, 13(4), 1719-1731. https://doi.org/10.29130/dubited.1735151
AMA Uğur A. Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles. DUBİTED. October 2025;13(4):1719-1731. doi:10.29130/dubited.1735151
Chicago Uğur, Alper. “Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles”. Duzce University Journal of Science and Technology 13, no. 4 (October 2025): 1719-31. https://doi.org/10.29130/dubited.1735151.
EndNote Uğur A (October 1, 2025) Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles. Duzce University Journal of Science and Technology 13 4 1719–1731.
IEEE A. Uğur, “Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles”, DUBİTED, vol. 13, no. 4, pp. 1719–1731, 2025, doi: 10.29130/dubited.1735151.
ISNAD Uğur, Alper. “Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles”. Duzce University Journal of Science and Technology 13/4 (October2025), 1719-1731. https://doi.org/10.29130/dubited.1735151.
JAMA Uğur A. Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles. DUBİTED. 2025;13:1719–1731.
MLA Uğur, Alper. “Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles”. Duzce University Journal of Science and Technology, vol. 13, no. 4, 2025, pp. 1719-31, doi:10.29130/dubited.1735151.
Vancouver Uğur A. Tribological Examination of Surface-Modified Copper Sulfide Nanoparticles. DUBİTED. 2025;13(4):1719-31.