Sistematik Derlemeler ve Meta Analiz
BibTex RIS Kaynak Göster

Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme

Yıl 2025, Cilt: 4 Sayı: 2, 32 - 53, 31.12.2025

Öz

Bu çalışma, süs bitkilerinde akıllı ve hassas tarım teknolojilerinin kullanım alanlarını, karşılaşılan zorlukları ve sınırlılıkları önerilerle birlikte ortaya koymak amacıyla hazırlanmış sistematik bir derlemedir. Çalışmada literatür taraması PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) yönergelerine uygun olarak gerçekleştirilmiş; seçilmiş veri tabanlarından elde edilen araştırmalar değerlendirilmiştir. Analizler, sensör tabanlı sulama sistemleri, uzaktan algılama, drone uygulamaları, IoT tabanlı izleme araçları, yapay zekâ destekli karar mekanizmaları ve otomasyonun süs bitkisi üretiminde öne çıkan teknolojiler olduğunu göstermektedir. Bu uygulamalar; su ve besin yönetiminde tasarruf, enerji verimliliği, ürün kalitesinde artış ve işgücü maliyetlerinde azalma sağlamaktadır. Ancak yüksek yatırım maliyetleri, küçük ölçekli üreticilerin uyum güçlüğü, veri güvenliği, standartlaşma eksiklikleri ve teknik bilgi yetersizlikleri yaygınlaşmayı sınırlayan temel engeller olarak öne çıkmaktadır. Gelecek araştırmalar için düşük maliyetli sensörlerin geliştirilmesi, yapay zekâ destekli tahmin modellerinin yaygınlaştırılması ve üretici eğitim programlarının güçlendirilmesi önerilmektedir. Sonuç olarak, akıllı ve hassas tarım teknolojilerinin süs bitkileri sektöründe sürdürülebilir üretim için stratejik bir potansiyel taşıdığı; ancak bunun gerçekleşmesi için ekonomik, teknik ve kurumsal engellerin aşılması gerektiği sonucuna ulaşılmıştır.

Kaynakça

  • Abarna, J., & Selvakumar, A. (2015). Rose flower harvesting robot. International Journal of Applied Engineering, 4216–4222.
  • Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry - A systematic literature review on agriculture 4.0. Smart Agriculture. Technology, 2, 100042. https://doi.org/10.1016/j.atech.2022.100042 Adli, H. K., Remli, M. A., Wan Salihin Wong, K. N. S., Ismail, N. A., González-Briones, A., Corchado, J. M., & Mohamad, M. S. (2023). Recent advancements and challenges of a IoT application in smart agriculture: A review. Sensors, 23, 3752. https://doi.org/10.3390/s23073752
  • Ahmed, B., Shabbir, H., Naqvi, S. R., & Peng, L. (2024). Smart agriculture: Current state, opportunities and challenges. Institute of Electrical and Electronics Engineers Access, 12, 144456-144478. https://doi.org/10.1109/ACCESS.2024.3471647
  • Alahmadi, A. N., Rehman, S. U., Alhazmi, H. S., Glynn, D. G., Shoaib, H., & Solé, P. (2022). Cyber-security threats and side-channel attacks for digital agriculture. Sensors, 22(9), 3520. https://doi.org/10.3390/s22093520
  • Alves, R. G., Souza, G., Maia, R. F., Tran, A. L. H., Kamienski, C., Soininen, J. P., Aquino, P. T., & Lima, F. (2019). A digital twin for smart farming. In IEEE Global Humanitarian Technology Conference (GHTC), 1-4. https://doi.org/10.1109/GHTC46095.2019.9033075
  • Anuga, S. W., Gordon, C., Boon, E., & Surugu, J. M. I. (2019). Determinants of climate smart agriculture (CSA) adoption among smallholder food crop farmers in the Techiman Municipality, Ghana. Ghana Journal of Geography, 11(1), 124-139. https://dx.doi.org/10.4314/gjg.v11i1.8
  • Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. Institute of Electrical and Electronics Engineers Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
  • Balyan, S., Jangir, H., Tripathi, S. N., Tripathi, A., Jhang, T., & Pandey, P. (2024). Seeding a sustainable future: Navigating the digital horizon of smart agriculture. Sustainability, 16(2), 475. https://doi.org/10.3390/su16020475
  • Banda-Chávez, J. M., Pablo Serrano-Rubio, J., Osvaldo Manjarrez-Carrillo, A., Maria Rodriguez-Vidal, L., & Herrera-Guzman, R. (2018). Intelligent wireless sensor network for ornamental plant care. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, October 2018, https://doi.org/10.1109/IECON.2018.8591644
  • Bañón, S., Ochoa, J., Bañón, D., Ortuño, M. F., & Sánchez-Blanco, M. J. (2019). Controlling salt flushing using a salinity index obtained by soil dielectric sensors improves the physiological status and quality of potted hydrangea plant. Scientia Horticulturae, 247, 335-343. https://doi.org/10.1016/j.scienta.2018.12.026
  • Barreto, L., & Amaral, A. (2018). Smart farming: Cyber security challenges. In 2018 International Conference on Intelligent Systems (IS), September, 870-876. https://doi.org/10.1109/IS.2018.8710531
  • Beeson, R. C., & Brooks, J. (2006). Evaluation of a model based on reference crop evapotranspiration (ETo) for precision irrigation using overhead sprinklers during nursery production of Ligustrum Japonica. V. International Symposium on Irrigation Horticultural Crops, 792, 85–90. https://doi.org/10.17660/ActaHortic.2008.792.7
  • Bhakta, I., Phadikar, S., & Majumder, K. (2019). State‐of‐the‐art technologies in precision agriculture: A systematic review. Journal of the Science of Food and Agriculture, 99(11), 4878-4888. https://doi.org/10.1002/jsfa.9693
  • Blasch, J., van der Kroon, B., van Beukering, P., Munster, R., Fabiani, S., Nino, P., & Vanino, S. (2022). Farmer preferences for adopting precision farming technologies: A case study from Italy. European Review of Agricultural Economics, 49(1), 33-81. https://doi.org/10.1093/erae/jbaa031
  • Cardoso, J. C., & Vendrame, W. A. (2022). Innovation in propagation and cultivation of ornamental plants. Horticulturae, 8(3), 229. https://doi.org/10.3390/horticulturae8030229
  • Carolan, M. (2020). Automated agri-food futures: Robotics, labor and the distributive politics of digital agriculture. Journal of Peasant Studies, 47(1), 184–207. https://doi.org/10.1080/03066150.2019.1584189
  • Choi, S. Y., & Lee, A. K. (2020). Development of a cut rose longevity prediction model using thermography and machine learning. Horticultural Science and Technology, 38(5), 675-685. https://doi.org/10.7235/HORT.20200061
  • Data Bridge Market Research. (2022). Global Flowers and Ornamental Plants Market – Industry Trends and Forecast to 2029. https://www.databridgemarketresearch.com/reports/global-flowers-and-ornamental-plants-market#:~:text=Market%20Analysis%20and%20Size&text=Data%20Bridge%20Market%20Research%20analyses,forecast%20period%20of%202022%2D2029. Erişim Tarihi: 22.08.2025
  • DGAGRI-G2 (2020). Horticultural products. In Flowers and Ornamental Plants—Production; Statistics 2010–2019; European Commission Working Document. Publications Office of the European Union: Luxembourg, Luxembourg. https://agriculture.ec.europa.eu/system/files/2020-06/flowers-ornamental-plants-statistics_en_0.pdf Erişim Tarihi: 16.08.2025
  • Eissa, M. (2024). Precision agriculture using artificial intelligence and robotics. Journal of Research in Agriculture and Food Sciences, 1(2), 35-52. https://doi.org/10.5455/JRAFS.20240404014009
  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. http://www.nature.com/doifinder/10.1038/nature10452
  • Food and Agriculture Organization (FAO). (2009). Feeding the world in 2050. https://www.fao.org/4/k6021e/k6021e.pdf Erişim Tarihi: 16.08.2025
  • Freeman, D., Gupta, S., Smith, D. H., Maja, J. M., Robbins, J., Owen Jr, J. S., Peña, J. M., & Castro, A. I. (2019). Watson on the farm: Using cloud-based artificial intelligence to identify early indicators of water stress. Remote Sensing, 11(22), 2645. https://doi.org/10.3390/rs11222645
  • Freidenreich, A., Barraza, G., Jayachandran, K., & Khoddamzadeh, A. A. (2019). Precision agriculture application for sustainable nitrogen management of Justicia brandegeana using optical sensor technology. Agriculture, 9(5), 98. https://doi.org/10.3390/agriculture9050098
  • Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., & Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agriculture Water Managment, 153, 9–19. https://doi.org/10.1016/j.agwat.2015.01.020
  • Giovannini, A., Laura, M., Nesi, B., Savona, M., & Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40(3), 461-478. https://doi.org/10.1007/s00299-020-02632-x
  • Goel, R., & Gupta, P. (2020). Robotics and Industry 4.0. (Ed: Nayyar, A., Kumar, A.), A Road Map to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, Springer: Cham, Switzerland, 157–169. http://dx.doi.org/10.1007/978-3-030-14544-6
  • Gomiero, T. (2019). Soil and crop management to save food and enhance food security. (Ed: Galanakis, C.M.), Saving Food, Academic Press: Cambridge, MA, USA, 33–87. https://doi.org/10.1016/B978-0-12-815357-4.00002-X
  • Hendricks, J., Briercliffe, T., Oosterom, B., Treer, A., Kok, G., Edwards, T., & Kong, H. (2019). Productions and Markets, The Future of Ornamentals. AIPH, International Association of Horticultural Producers: Oxfordshire, UK.
  • Huang, Y., & Wang, Y. (2024). Exploring enhanced object detection and classification methods for Alstroemeria genus morado. International Journal of Advanced Computer Science and Applications, 15(5), 1143-1150. https://doi.org/10.14569/ijacsa.2024.01505116
  • Huylenbroeck, J. V., & Bhattarai, K. (2022). Ornamental plant breeding: entering a new era?. Ornamental Horticulture, 28(3), 297–305. https://doi.org/10.1590/2447-536X.v28i3.2516
  • K., M. M. P., Pagariya, M. C., Jadhav, P. R., Gawade, N. S., Sarode, D. K., Karkute, S. G., Kardile, H. B., Deshmukh, R., Penna, S., & Kawar, P .G. (2025). Advancing ornamental plant breeding through genomic technologies: opportunities, challenges, and future directions. Functional and Integrative Genomics, 25(140), 1-23. https://doi.org/10.1007/s10142-025-01640-y
  • Kashyap, P. K., Kumar, S., Jaiswal, A., Prasad, M., & Gandomi, A. H. (2021). Towards precision agriculture: IoT-Enabled intelligent irrigation systems using deep learning neural network. IEEE Sensors Journal, 21(16), 17479–17491. https://doi.org/10.1109/JSEN.2021.3069266
  • Kawollek, M., & Rath, T. (2008). Robotic harvest of cut flowers based on image processing by using Gerbera jamesonii as model plant. Acta Horticurae, 801, 557–564. https://doi.org/10.17660/ActaHortic.2008.801.62
  • Khan, N., Ray, R. L., Zhang, S., Osabuohien, E., & Ihtisham, M. (2022). Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technology in Society, 68, 101866. https://doi.org/10.1016/j.techsoc.2022.101866
  • Kocian, A., Massa, D., Cannazzaro, S., Incrocci, L., Di Lonardo, S., Milazzo, P., & Chessa, S. (2020). Dynamic Bayesian network for crop growth prediction in greenhouses. Computers and Electronics in Agriculture, 169, 105167. https://doi.org/10.1016/j.compag.2019.105167
  • Li, W., Clark, B., Taylor, J.A., Kendall, H., Jones, G., Li, Z., Jin, S., Zhao, C., Yang, G., Shuai, C., Cheng, X., Chen, J., Yang, H., & Frewer, L. J. (2020). A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Computers and Electronics in Agriculture, 172, 105305. https://doi.org/10.1016/j.compag.2020.105305
  • Li, Y., Luo, J., Liu, Z., Wu, D., & Zhang, C. (2023). A personalized and smart flowerpot enabled by 3D printing and cloud technology for ornamental horticulture. Sensors, 23(13), 6116. https://doi.org/10.3390/s23136116
  • Liakos V., & Mavridis P. (2019). Sensor networks in precision agriculture. In: Precision agriculture technologies for crop improvement. Springer, Cham, Switzerland, 15–32, 2019.
  • Lin, Y. B., Chen, Y. T., Hsieh, W. J., Chen, W. L., Lin, Y. W., & Sun, E. (2024). Design of a spore germination sensor for orchids. IEEE Sensors Letters, 9(12). https://doi.org/10.1109/LSENS.2024.3520018
  • Mahmud, M. S., Zahid, A., Das, A. K. (2023). Sensing and automation technologies for ornamental nursery crop production: Current status and future prospects. Sensors, 23(4), 1818. https://doi.org/10.3390/s23041818
  • Nasra, P., Singh, J., Rani, S., Shandilya, G., Bharany, S., Sood, S., Rehman, A. U., & Hussen, S. (2025). Optimized ReXNet variants with spatial pyramid pooling, CoordAttention, and convolutional block attention module for money plant disease detection. Discover Sustainability, 6(1), 391. https://doi.org/10.1007/s43621-025-01241-6 Ni, L., Boonsub, P., & Tao, X. (2025). Exploring the bridge between digital transformation and sustainable supply chain performance: An empirical study based on Yunnan fresh cut flower supply chain. Journal of Project Management, 10(2), 185-440. https://doi.org/10.5267/j.jpm.2025.3.002
  • Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 1-36. https://doi.org/10.1136/bmj.n160
  • Patiluna, V., Owen Jr. J., Maja, J. M., Neupane, J., Behmann, J., Bohnenkamp, D., ... & de Castro, A. (2025). Using hyperspectral imaging and principal component analysis to detect and monitor water stress in ornamental plants. Remote Sensing, 17(2), 285. https://doi.org/10.3390/rs17020285
  • Paul, K., Chatterjee, S. S., Pai, P., Varshney, A., Juikar, S., Prasad, V., Bhadra, B., & Dasgupta, S. (2022). Viable smart sensors and their application in data driven agriculture. Computers and Electronics in Agriculture, 198, 107096. https://doi.org/10.1016/j.compag.2022.107096
  • Pivoto, D., Barham, B., Waquil, P. D., Foguesatto, C. R., Dalla Corte, V. F., Zhang, D., & Talamini, E. (2019). Factors influencing the adoption of smart farming by Brazilian grain farmers. International Food and Agribusiness Management Review, 22(4), 571-588. https://doi.org/10.22434/ifamr2018.0086
  • Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Corte, V. F. D., & Mores, G. D. V. (2018). Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, 5(1), 21–32. https://linkinghub.elsevier.com/retrieve/pii/S2214317316301184
  • Pratama, H. P., Putri, D. I. H., Putri, H. E., Irawan, E. N., & Kautsar, M. A. R. (2024). Smart watering of ornamental plants: exploring the potential of decision trees in precision agriculture based on IoT. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 15(1), 82-92. https://doi.org/10.55981/j.mev.2024.963
  • Qi, T. Z. (2023). A review of solar dc microgrids design for smart farming in a New Zealand lifestyle block. 2023 IEEE Fifth International Conference on DC Microgrids (ICDCM), Novemver, 1-5. https://doi.org/10.1109/ICDCM54452.2023.10433636
  • Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Frontiers Sustainable Food Systems, 2, 87. https://doi.org/10.3389/fsufs.2018.00087
  • Ruett, M., Dalhaus, T., Whitney, C., & Luedeling, E. (2022). Assessing expected utility and profitability to support decision-making for disease control strategies in ornamental heather production. Precision Agriculture, 23(5), 1775-1800. https://doi.org/10.1007/s11119-022-09909-z
  • Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), 207. https://doi.org/10.3390/agronomy10020207
  • Shepherd, M., Turner, J.A., Small, B., & Wheeler, D. (2020). Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. Journal of the Science of Food and Agriculture, 100, 5083–5092. https://doi.org/10.1002/jsfa.9346
  • Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
  • Süs Bitkileri Üreticileri Alt Birliği (SÜSBİR). (2025). Süs Bitkileri Sektör Raporu. https://www.susbir.org.tr/belgeler/raporlar/susbir-sektor-raporu-2025.pdf#page=2.08 Erişim Tarihi: 22.08.2025
  • Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
  • Traversari, S., Cacini, S., Galieni, A., Nesi, B., Nicastro, N., & Pane, C. (2021). Precision agriculture digital technologies for sustainable fungal disease management of ornamental plants. Sustainability, 13(7), 3707. https://doi.org/10.3390/su13073707
  • Tsai, Y. H., & Hsu, T. C. (2024). An effective deep neural network in edge computing enabled Internet of Things for plant diseases monitoring. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 695-699. https://doi.org/10.1109/wacvw60836.2024.00081
  • Ullo, S. L., & Sinha, G. R. (2021). Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585
  • Vecchio, Y., De Rosa, M., Adinolfi, F., Bartoli, L., & Masi, M. (2020). Adoption of precision farming tools: A context-related analysis. Land Use Policy, 94, 104481. https://doi.org/10.1016/j.landusepol.2020.104481
  • Wani, M. A., Din, A., Nazki, I. T., Rehman, T. U., Al-Khayri, J. M., Jain, S. M., ... & Mushtaq, M. (2023). Navigating the future: exploring technological advancements and emerging trends in the sustainable ornamental industry. Frontiers in Environmental Science, 11, 1188643. https://doi.org/10.3389/fenvs.2023.1188643
  • Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). Opportunities and challenges for big data in agricultural and environmental analysis. Annual Review Resource Economics, 10, 19–37. https://doi.org/10.1146/annurev-resource-100516-053654
  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming—A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023

A Systematic Review on the Applications, Challenges, and Limitations of Smart and Precision Agriculture Technologies in Ornamental Plants

Yıl 2025, Cilt: 4 Sayı: 2, 32 - 53, 31.12.2025

Öz

This study is a systematic review prepared to identify the application areas of smart and precision agriculture technologies in ornamental plants, the challenges encountered, and recommendations for future research. The literature review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, and studies obtained from selected databases were analyzed. The findings indicate that sensor-based irrigation systems, remote sensing, drone applications, IoT-based monitoring tools, artificial intelligence-supported decision-making mechanisms, and automation are the most prominent technologies in ornamental plant production. These applications contribute to savings in water and nutrient management, improved energy efficiency, enhanced product quality, and reduced labor costs. However, high investment costs, the adaptation difficulties of small-scale producers, data security issues, lack of standardization, and insufficient technical knowledge emerge as major barriers limiting widespread adoption. For future research, the development of low-cost sensors, the expansion of artificial intelligence-based prediction models, and the strengthening of producer training programs are recommended. In conclusion, smart and precision farming technologies hold strategic potential for sustainable production in the ornamental plant sector; nevertheless, overcoming economic, technical, and institutional barriers is essential for realizing this potential.

Kaynakça

  • Abarna, J., & Selvakumar, A. (2015). Rose flower harvesting robot. International Journal of Applied Engineering, 4216–4222.
  • Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry - A systematic literature review on agriculture 4.0. Smart Agriculture. Technology, 2, 100042. https://doi.org/10.1016/j.atech.2022.100042 Adli, H. K., Remli, M. A., Wan Salihin Wong, K. N. S., Ismail, N. A., González-Briones, A., Corchado, J. M., & Mohamad, M. S. (2023). Recent advancements and challenges of a IoT application in smart agriculture: A review. Sensors, 23, 3752. https://doi.org/10.3390/s23073752
  • Ahmed, B., Shabbir, H., Naqvi, S. R., & Peng, L. (2024). Smart agriculture: Current state, opportunities and challenges. Institute of Electrical and Electronics Engineers Access, 12, 144456-144478. https://doi.org/10.1109/ACCESS.2024.3471647
  • Alahmadi, A. N., Rehman, S. U., Alhazmi, H. S., Glynn, D. G., Shoaib, H., & Solé, P. (2022). Cyber-security threats and side-channel attacks for digital agriculture. Sensors, 22(9), 3520. https://doi.org/10.3390/s22093520
  • Alves, R. G., Souza, G., Maia, R. F., Tran, A. L. H., Kamienski, C., Soininen, J. P., Aquino, P. T., & Lima, F. (2019). A digital twin for smart farming. In IEEE Global Humanitarian Technology Conference (GHTC), 1-4. https://doi.org/10.1109/GHTC46095.2019.9033075
  • Anuga, S. W., Gordon, C., Boon, E., & Surugu, J. M. I. (2019). Determinants of climate smart agriculture (CSA) adoption among smallholder food crop farmers in the Techiman Municipality, Ghana. Ghana Journal of Geography, 11(1), 124-139. https://dx.doi.org/10.4314/gjg.v11i1.8
  • Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. Institute of Electrical and Electronics Engineers Access, 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609
  • Balyan, S., Jangir, H., Tripathi, S. N., Tripathi, A., Jhang, T., & Pandey, P. (2024). Seeding a sustainable future: Navigating the digital horizon of smart agriculture. Sustainability, 16(2), 475. https://doi.org/10.3390/su16020475
  • Banda-Chávez, J. M., Pablo Serrano-Rubio, J., Osvaldo Manjarrez-Carrillo, A., Maria Rodriguez-Vidal, L., & Herrera-Guzman, R. (2018). Intelligent wireless sensor network for ornamental plant care. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, October 2018, https://doi.org/10.1109/IECON.2018.8591644
  • Bañón, S., Ochoa, J., Bañón, D., Ortuño, M. F., & Sánchez-Blanco, M. J. (2019). Controlling salt flushing using a salinity index obtained by soil dielectric sensors improves the physiological status and quality of potted hydrangea plant. Scientia Horticulturae, 247, 335-343. https://doi.org/10.1016/j.scienta.2018.12.026
  • Barreto, L., & Amaral, A. (2018). Smart farming: Cyber security challenges. In 2018 International Conference on Intelligent Systems (IS), September, 870-876. https://doi.org/10.1109/IS.2018.8710531
  • Beeson, R. C., & Brooks, J. (2006). Evaluation of a model based on reference crop evapotranspiration (ETo) for precision irrigation using overhead sprinklers during nursery production of Ligustrum Japonica. V. International Symposium on Irrigation Horticultural Crops, 792, 85–90. https://doi.org/10.17660/ActaHortic.2008.792.7
  • Bhakta, I., Phadikar, S., & Majumder, K. (2019). State‐of‐the‐art technologies in precision agriculture: A systematic review. Journal of the Science of Food and Agriculture, 99(11), 4878-4888. https://doi.org/10.1002/jsfa.9693
  • Blasch, J., van der Kroon, B., van Beukering, P., Munster, R., Fabiani, S., Nino, P., & Vanino, S. (2022). Farmer preferences for adopting precision farming technologies: A case study from Italy. European Review of Agricultural Economics, 49(1), 33-81. https://doi.org/10.1093/erae/jbaa031
  • Cardoso, J. C., & Vendrame, W. A. (2022). Innovation in propagation and cultivation of ornamental plants. Horticulturae, 8(3), 229. https://doi.org/10.3390/horticulturae8030229
  • Carolan, M. (2020). Automated agri-food futures: Robotics, labor and the distributive politics of digital agriculture. Journal of Peasant Studies, 47(1), 184–207. https://doi.org/10.1080/03066150.2019.1584189
  • Choi, S. Y., & Lee, A. K. (2020). Development of a cut rose longevity prediction model using thermography and machine learning. Horticultural Science and Technology, 38(5), 675-685. https://doi.org/10.7235/HORT.20200061
  • Data Bridge Market Research. (2022). Global Flowers and Ornamental Plants Market – Industry Trends and Forecast to 2029. https://www.databridgemarketresearch.com/reports/global-flowers-and-ornamental-plants-market#:~:text=Market%20Analysis%20and%20Size&text=Data%20Bridge%20Market%20Research%20analyses,forecast%20period%20of%202022%2D2029. Erişim Tarihi: 22.08.2025
  • DGAGRI-G2 (2020). Horticultural products. In Flowers and Ornamental Plants—Production; Statistics 2010–2019; European Commission Working Document. Publications Office of the European Union: Luxembourg, Luxembourg. https://agriculture.ec.europa.eu/system/files/2020-06/flowers-ornamental-plants-statistics_en_0.pdf Erişim Tarihi: 16.08.2025
  • Eissa, M. (2024). Precision agriculture using artificial intelligence and robotics. Journal of Research in Agriculture and Food Sciences, 1(2), 35-52. https://doi.org/10.5455/JRAFS.20240404014009
  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., et al. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. http://www.nature.com/doifinder/10.1038/nature10452
  • Food and Agriculture Organization (FAO). (2009). Feeding the world in 2050. https://www.fao.org/4/k6021e/k6021e.pdf Erişim Tarihi: 16.08.2025
  • Freeman, D., Gupta, S., Smith, D. H., Maja, J. M., Robbins, J., Owen Jr, J. S., Peña, J. M., & Castro, A. I. (2019). Watson on the farm: Using cloud-based artificial intelligence to identify early indicators of water stress. Remote Sensing, 11(22), 2645. https://doi.org/10.3390/rs11222645
  • Freidenreich, A., Barraza, G., Jayachandran, K., & Khoddamzadeh, A. A. (2019). Precision agriculture application for sustainable nitrogen management of Justicia brandegeana using optical sensor technology. Agriculture, 9(5), 98. https://doi.org/10.3390/agriculture9050098
  • Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., & Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agriculture Water Managment, 153, 9–19. https://doi.org/10.1016/j.agwat.2015.01.020
  • Giovannini, A., Laura, M., Nesi, B., Savona, M., & Cardi, T. (2021). Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Reports, 40(3), 461-478. https://doi.org/10.1007/s00299-020-02632-x
  • Goel, R., & Gupta, P. (2020). Robotics and Industry 4.0. (Ed: Nayyar, A., Kumar, A.), A Road Map to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, Springer: Cham, Switzerland, 157–169. http://dx.doi.org/10.1007/978-3-030-14544-6
  • Gomiero, T. (2019). Soil and crop management to save food and enhance food security. (Ed: Galanakis, C.M.), Saving Food, Academic Press: Cambridge, MA, USA, 33–87. https://doi.org/10.1016/B978-0-12-815357-4.00002-X
  • Hendricks, J., Briercliffe, T., Oosterom, B., Treer, A., Kok, G., Edwards, T., & Kong, H. (2019). Productions and Markets, The Future of Ornamentals. AIPH, International Association of Horticultural Producers: Oxfordshire, UK.
  • Huang, Y., & Wang, Y. (2024). Exploring enhanced object detection and classification methods for Alstroemeria genus morado. International Journal of Advanced Computer Science and Applications, 15(5), 1143-1150. https://doi.org/10.14569/ijacsa.2024.01505116
  • Huylenbroeck, J. V., & Bhattarai, K. (2022). Ornamental plant breeding: entering a new era?. Ornamental Horticulture, 28(3), 297–305. https://doi.org/10.1590/2447-536X.v28i3.2516
  • K., M. M. P., Pagariya, M. C., Jadhav, P. R., Gawade, N. S., Sarode, D. K., Karkute, S. G., Kardile, H. B., Deshmukh, R., Penna, S., & Kawar, P .G. (2025). Advancing ornamental plant breeding through genomic technologies: opportunities, challenges, and future directions. Functional and Integrative Genomics, 25(140), 1-23. https://doi.org/10.1007/s10142-025-01640-y
  • Kashyap, P. K., Kumar, S., Jaiswal, A., Prasad, M., & Gandomi, A. H. (2021). Towards precision agriculture: IoT-Enabled intelligent irrigation systems using deep learning neural network. IEEE Sensors Journal, 21(16), 17479–17491. https://doi.org/10.1109/JSEN.2021.3069266
  • Kawollek, M., & Rath, T. (2008). Robotic harvest of cut flowers based on image processing by using Gerbera jamesonii as model plant. Acta Horticurae, 801, 557–564. https://doi.org/10.17660/ActaHortic.2008.801.62
  • Khan, N., Ray, R. L., Zhang, S., Osabuohien, E., & Ihtisham, M. (2022). Influence of mobile phone and internet technology on income of rural farmers: Evidence from Khyber Pakhtunkhwa Province, Pakistan. Technology in Society, 68, 101866. https://doi.org/10.1016/j.techsoc.2022.101866
  • Kocian, A., Massa, D., Cannazzaro, S., Incrocci, L., Di Lonardo, S., Milazzo, P., & Chessa, S. (2020). Dynamic Bayesian network for crop growth prediction in greenhouses. Computers and Electronics in Agriculture, 169, 105167. https://doi.org/10.1016/j.compag.2019.105167
  • Li, W., Clark, B., Taylor, J.A., Kendall, H., Jones, G., Li, Z., Jin, S., Zhao, C., Yang, G., Shuai, C., Cheng, X., Chen, J., Yang, H., & Frewer, L. J. (2020). A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Computers and Electronics in Agriculture, 172, 105305. https://doi.org/10.1016/j.compag.2020.105305
  • Li, Y., Luo, J., Liu, Z., Wu, D., & Zhang, C. (2023). A personalized and smart flowerpot enabled by 3D printing and cloud technology for ornamental horticulture. Sensors, 23(13), 6116. https://doi.org/10.3390/s23136116
  • Liakos V., & Mavridis P. (2019). Sensor networks in precision agriculture. In: Precision agriculture technologies for crop improvement. Springer, Cham, Switzerland, 15–32, 2019.
  • Lin, Y. B., Chen, Y. T., Hsieh, W. J., Chen, W. L., Lin, Y. W., & Sun, E. (2024). Design of a spore germination sensor for orchids. IEEE Sensors Letters, 9(12). https://doi.org/10.1109/LSENS.2024.3520018
  • Mahmud, M. S., Zahid, A., Das, A. K. (2023). Sensing and automation technologies for ornamental nursery crop production: Current status and future prospects. Sensors, 23(4), 1818. https://doi.org/10.3390/s23041818
  • Nasra, P., Singh, J., Rani, S., Shandilya, G., Bharany, S., Sood, S., Rehman, A. U., & Hussen, S. (2025). Optimized ReXNet variants with spatial pyramid pooling, CoordAttention, and convolutional block attention module for money plant disease detection. Discover Sustainability, 6(1), 391. https://doi.org/10.1007/s43621-025-01241-6 Ni, L., Boonsub, P., & Tao, X. (2025). Exploring the bridge between digital transformation and sustainable supply chain performance: An empirical study based on Yunnan fresh cut flower supply chain. Journal of Project Management, 10(2), 185-440. https://doi.org/10.5267/j.jpm.2025.3.002
  • Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 1-36. https://doi.org/10.1136/bmj.n160
  • Patiluna, V., Owen Jr. J., Maja, J. M., Neupane, J., Behmann, J., Bohnenkamp, D., ... & de Castro, A. (2025). Using hyperspectral imaging and principal component analysis to detect and monitor water stress in ornamental plants. Remote Sensing, 17(2), 285. https://doi.org/10.3390/rs17020285
  • Paul, K., Chatterjee, S. S., Pai, P., Varshney, A., Juikar, S., Prasad, V., Bhadra, B., & Dasgupta, S. (2022). Viable smart sensors and their application in data driven agriculture. Computers and Electronics in Agriculture, 198, 107096. https://doi.org/10.1016/j.compag.2022.107096
  • Pivoto, D., Barham, B., Waquil, P. D., Foguesatto, C. R., Dalla Corte, V. F., Zhang, D., & Talamini, E. (2019). Factors influencing the adoption of smart farming by Brazilian grain farmers. International Food and Agribusiness Management Review, 22(4), 571-588. https://doi.org/10.22434/ifamr2018.0086
  • Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Corte, V. F. D., & Mores, G. D. V. (2018). Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture, 5(1), 21–32. https://linkinghub.elsevier.com/retrieve/pii/S2214317316301184
  • Pratama, H. P., Putri, D. I. H., Putri, H. E., Irawan, E. N., & Kautsar, M. A. R. (2024). Smart watering of ornamental plants: exploring the potential of decision trees in precision agriculture based on IoT. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 15(1), 82-92. https://doi.org/10.55981/j.mev.2024.963
  • Qi, T. Z. (2023). A review of solar dc microgrids design for smart farming in a New Zealand lifestyle block. 2023 IEEE Fifth International Conference on DC Microgrids (ICDCM), Novemver, 1-5. https://doi.org/10.1109/ICDCM54452.2023.10433636
  • Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Frontiers Sustainable Food Systems, 2, 87. https://doi.org/10.3389/fsufs.2018.00087
  • Ruett, M., Dalhaus, T., Whitney, C., & Luedeling, E. (2022). Assessing expected utility and profitability to support decision-making for disease control strategies in ornamental heather production. Precision Agriculture, 23(5), 1775-1800. https://doi.org/10.1007/s11119-022-09909-z
  • Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 10(2), 207. https://doi.org/10.3390/agronomy10020207
  • Shepherd, M., Turner, J.A., Small, B., & Wheeler, D. (2020). Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. Journal of the Science of Food and Agriculture, 100, 5083–5092. https://doi.org/10.1002/jsfa.9346
  • Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
  • Süs Bitkileri Üreticileri Alt Birliği (SÜSBİR). (2025). Süs Bitkileri Sektör Raporu. https://www.susbir.org.tr/belgeler/raporlar/susbir-sektor-raporu-2025.pdf#page=2.08 Erişim Tarihi: 22.08.2025
  • Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
  • Traversari, S., Cacini, S., Galieni, A., Nesi, B., Nicastro, N., & Pane, C. (2021). Precision agriculture digital technologies for sustainable fungal disease management of ornamental plants. Sustainability, 13(7), 3707. https://doi.org/10.3390/su13073707
  • Tsai, Y. H., & Hsu, T. C. (2024). An effective deep neural network in edge computing enabled Internet of Things for plant diseases monitoring. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 695-699. https://doi.org/10.1109/wacvw60836.2024.00081
  • Ullo, S. L., & Sinha, G. R. (2021). Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585
  • Vecchio, Y., De Rosa, M., Adinolfi, F., Bartoli, L., & Masi, M. (2020). Adoption of precision farming tools: A context-related analysis. Land Use Policy, 94, 104481. https://doi.org/10.1016/j.landusepol.2020.104481
  • Wani, M. A., Din, A., Nazki, I. T., Rehman, T. U., Al-Khayri, J. M., Jain, S. M., ... & Mushtaq, M. (2023). Navigating the future: exploring technological advancements and emerging trends in the sustainable ornamental industry. Frontiers in Environmental Science, 11, 1188643. https://doi.org/10.3389/fenvs.2023.1188643
  • Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). Opportunities and challenges for big data in agricultural and environmental analysis. Annual Review Resource Economics, 10, 19–37. https://doi.org/10.1146/annurev-resource-100516-053654
  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming—A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Sistematik Derlemeler ve Meta Analiz
Yazarlar

Nida Bayhan

Gönderilme Tarihi 8 Eylül 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Bayhan, N. (2025). Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi, 4(2), 32-53. https://izlik.org/JA38YC64PG
AMA 1.Bayhan N. Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme. DÜSTIBİD. 2025;4(2):32-53. https://izlik.org/JA38YC64PG
Chicago Bayhan, Nida. 2025. “Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme”. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 4 (2): 32-53. https://izlik.org/JA38YC64PG.
EndNote Bayhan N (01 Aralık 2025) Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 4 2 32–53.
IEEE [1]N. Bayhan, “Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme”, DÜSTIBİD, c. 4, sy 2, ss. 32–53, Ara. 2025, [çevrimiçi]. Erişim adresi: https://izlik.org/JA38YC64PG
ISNAD Bayhan, Nida. “Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme”. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi 4/2 (01 Aralık 2025): 32-53. https://izlik.org/JA38YC64PG.
JAMA 1.Bayhan N. Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme. DÜSTIBİD. 2025;4:32–53.
MLA Bayhan, Nida. “Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme”. Düzce Üniversitesi Süs ve Tıbbi Bitkiler Botanik Bahçesi Dergisi, c. 4, sy 2, Aralık 2025, ss. 32-53, https://izlik.org/JA38YC64PG.
Vancouver 1.Bayhan N. Süs Bitkilerinde Akıllı ve Hassas Tarım Teknolojilerinin Kullanım Alanları, Karşılaşılan Zorluklar ve Sınırlılıklar Üzerine Sistematik Bir Derleme. DÜSTIBİD [Internet]. 01 Aralık 2025;4(2):32-53. Erişim adresi: https://izlik.org/JA38YC64PG