Derleme
BibTex RIS Kaynak Göster

Veteriner Anatomide 3B Modelleme ve Baskı Teknolojisi

Yıl 2025, Cilt: 18 Sayı: 2, 193 - 204, 31.12.2025
https://doi.org/10.47027/duvetfd.1741889

Öz

Anatomi canlının yapısını, içinde yer alan organları ve bu organların belirli sistemler dahilinde çalışmasını incelemektedir. Bu anatomik yapılara bakılırken çeşitli materyaller kullanılmaktadır. Formaldehit, sıvı köpük sabun, etanol ve sitrik asit çözeltisi içerisine konan organlar uzun süre çürümeden tutulsa da bu sıvıların solunması, birebir temasta bulunulması sağlığı tehdit etmektedir. Günümüzde teknolojinin de ilerlemesi ve neredeyse tüm alanlarda kullanımı veteriner anatomi alanına da yansımıştır. Görüntüleme yöntemleri ve çeşitli yazılımlar kullanılarak anatomik yapılar 3B olarak incelenebilmektedir. Böylelikle erişimi zor olan anatomik yapılar ve küçük boyutlardaki anatomik oluşumlara bakalabilme imkanı sunulmaktadır. Çeşitli 3B baskı cihazları kullanılarak bu modellerden materyaller elde edilebilmektedir. Böylelikle formaldehit gibi zararlı kimyasallarla daha az kontaminasyonla daha hijyenik koşullarda çalışmak mümkündür. Sunulan çalışmada veteriner anatomi alanında 3D modelleme ve baskı teknolojisiyle alakalı bilimsel çalışmalar sistemsel olarak bir araya getirildi. Hayvan türü bazında sistemsel olarak derlenen çalışmalarla 3D'nin veteriner anatomide geldiği nokta anlatılmaya çalışıldı. Bu konuda yapılacak olan çalışmalara yol gösterici olacağı düşünülmektedir.

Kaynakça

  • Li F, Liu C, Song X, Huan Y, Gao S, Jiang Z (2018). Production of accurate skeletal models of domestic animals using three‐dimensional scanning and printing technology. Anat Sci Educ., 11(1):73-80.
  • Özkadif S (2015). Some veterinary anatomical studies using three-dimensional reconstruction. Batman Univ Yaşam Bilim Derg., 5(2):288-295.
  • Singh N, Banga HS (2023). Librarian-scientist (s) collaboration in harnessing the potential of augmented reality (AR) and virtual reality (VR) for veterinary and animal sciences education and training: A Success Story of Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, I F L A.
  • Tan S, Hu A, Wilson T, Ladak H, Haase P, Fung K (2012). Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners. J LO., 126(4):395-401.
  • Berney S, Bétrancourt M, Molinari G, Hoyek N (2015). How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models. Anat Sci Educ., 8(5):452-462.
  • Elad D, Einav S (1990). Three-dimensional measurement of biological surfaces. ISPRS., 45(4):247-266.
  • Mitchell HL (1995). Applications of digital photogrammetry to medical investigations. ISPRS., 50(3):27-36.
  • Preece D, Williams SB, Lam R, Weller R (2013). “Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ., 6(4):216-224.
  • Königh HE, Liebich HG (2022). Domestic Animals Veterinary Anatomy Lecture and Color Atlas, 7. edition, Medipres publishing house, Ankara.
  • Ohlerth S, Scharf G (2007). Computed tomography in small animals–Basic principles and state of the art applications. TVJ., 173(2):254-271.
  • Dayan MO (2009). Obtaining three-dimensional images from computed tomography images of the stomach and intestines in New Zealand rabbits. Doctoral thesis. Selcuk University Institute of Health Sciences, Konya., 30-45.
  • Kaya T, Adapınar B, Özkan RAGIP (1997). Basic Radiology Technique, 3.edition, Güneş & Nobel Bookstore, Bursa.
  • Alkan Z (1999). Computerized Tomography. Veterinary Radiology, Mina Ajans, Ankara.
  • Girling SJ (2002). Mammalian Imaging and Anatomy, BSAVA exotic pets handbook, 2.edition, Wiley Blackwell publication, Oxford, UK, 120-130.
  • Memarian P, Pishavar E, Zanotti F et al. (2022). Active materials for 3D printing in small animals: Current modalities and future directions for orthopedic applications. Int J Mol Sci., 23(3):1045.
  • Van Epps A, Huston D, Sherrill J, Alvar A, Bowen A (2015). How 3D printers support teaching in engineering, technology and beyond. Bulletin of the Association for Information Science and Technology, 42(1):16-20.
  • Anonymous: https://www.ntboxmag.com/3d-yazicinin-mucidi-chuck-hull/ (Access: 21.04.2025).
  • Vickram AS, Shofia S, Manikandan S et al. (2025). 3D bio-printed scaffolds and smart implants: evaluating functional performance in animal surgery models. Annals of Medicine & Surgery, 87(6):3618-3634.
  • Dickson J, Gardiner A, Rhind S (2022). Veterinary anatomy education and spatial ability: where now and where next? J Vet Med Educ., 49(3):297-305.
  • Bahadir A, Yildiz H (2020). Veterinary Anatomy Movement System & Internal Organs, 5.edition, Ezgi Bookstore, Bursa, 80-250.
  • Kahraman S (2012). Three-dimensional modeling of computed tomography images of ossa membri thoracici in rats. Master's Thesis. Selcuk University, Institute of Health Sciences, Konya.
  • Demircioglu I, Gezer Ince N (2020). Three‐dimensional modelling of computed tomography images of limb bones in gazelles (Gazella subgutturosa). Anat Histol Embryol., 49(6):695-707.
  • Yılmaz O, Soygüder Z, Yavuz A (2020). Three-dimensional investigation by computed tomography of the clavicle and scapula in Van cats. Van Vet J., 31(1):34-41.
  • Yılmaz O, Soygüder Z, Yavuz A (2020). Anatomical, morphometric and volumetric examination of the humerus and antebrachium in Van cats by computerized tomography. Harran Univ Vet Fac J., 9(2):161-169.
  • Yılmaz O, Soygüder Z, Yavuz A (2020). Three-dimensional examination of the skeleton manus in Van cats by computerized tomography. Ataturk University J Vet Sci., 15(2):167-176.
  • Yilmaz O, Koçyiğit A, Kırbaş Doğan G, Kanik B (2025). Three‐dimensional morphometric analysis of the metatarsal and phalangeal bones in Van cats. Anat Histol Embryol., 54(1):e70006.
  • Baygeldi SB, Güzel BC, Kanmaz YA, Yilmaz S (2022). Evaluation of skull and mandible morphometric measurements and three‐dimensional modelling of computed tomographic images of porcupine (Hystrix cristata). Anat Histol Embryol., 51(4):549-556.
  • Koçyiğit A (2023). 3D Reconstruction of Some Extremity Bones in New Zealand Rabbits with 3D Scanner and Computerized Tomography. Doctoral Thesis. Selçuk University, Institute of Health Sciences, Konya.
  • İşbilir F, Güzel BC (2023). Investigation of metapodium and acropodium bones in Siirt-colored Mohair goat (Capra hircus) by 3D Modeling. Harran Univ Vet Fac J., 12(2):245-252.
  • İşbilir F, Güzel BC (2023). Morphometric analysis of the mandible of ram and ewe Romanov sheep (Ovis aries) with 3D modelling: A CT study. Anat Histol Embryol., 52(5):742-751.
  • Selcuk ML (2023). Computed tomography reconstruction and morphometric analysis of the humerus and femur in New Zealand rabbits, Eurasian J Vet Sci., 39(4):164-170.
  • Demircioğlu İ, Kırbaş Doğan G, Aksünger Karaavci F, Gürbüz İ, Demiraslan Y (2020). Three-dimensional modelling and morphometric investigation of computed tomography images of Brown bear’s (Ursus arctos) ossa cruris (Zeugopodium). Folia Morphol., 79(4):811-816.
  • Yilmaz O, Soyguder Z, Yavuz A, Dundar I (2020). Three‐dimensional computed tomographic examination of pelvic cavity in Van Cats and its morphometric investigation. Anat Histol Embryol., 49(1):60-66.
  • Atalar Ö, Koç M, Yüksel M, Arkaş AA (2017). Three-dimensional evaluation of the pelvic cavity in Kangal dogs by computerized tomography. F Ü Sağ Bil Vet Derg., 31:105-109.
  • Bertti JVP, Silveira EE, Assis Neto ACD (2020). Reconstrução e impressão 3D do neurocrânio de cão com o uso de tomografia computadorizada como ferramenta para auxiliar no ensino da anatomia veterinária. Arq Bras Med Vet Zootec., 72:1653-1658.
  • Baş Ekici H (2023). Three-dimensional Modeling and Investigation of Morphometric Features of the Skull of Akkaraman and Kangal Akkaraman Sheep Using Computerized Tomography Images. Doctoral Thesis. Selçuk University Institute of Health Sciences, Konya, 30-55.
  • İnce NG, Demircioğlu İ, Yılmaz B, Ağyar A, Dusak A (2018). Three-dimensional modeling of the cranium in seagulls (Laridae spp.). Harran Univ Vet Fac J., 7(1):98-101.
  • Pereira F MAM, Bete SBDS, Inamassu LR, Mamprim MJ, Schimming BC (2020). Anatomy of the skull in the capybara (Hydrochoerus hydrochaeris) using radiography and 3D computed tomography. Anat Histol Embryol., 49(3):317-324.
  • Bakıcı C, Akgün RO, Oto Ç (2019). The applicability and efficiency of 3-dimensional printing models of hyoid bone in comparative veterinary anatomy education. J A V M A., 90(2):71-75.
  • Claridge HAH, Piercy RJ, Parry A, Weller R (2010). The 3D anatomy of the cervical articular process joints in the horse and their topographical relationship to the spinal cord. E V J., 42(8):726-731.
  • Özkadif S, Halıgür A (2019). Investigation of morphometric features of fox (Vulpes vulpes) cervical vertebrae using three-dimensional reconstruction. M A E Vet Fak Derg., 4(2):57-61.
  • Dursun N (2007). Anatomy of Domestic Birds, 4.edition, Medisan Publishing House, Ankara, 20-100.
  • Longo F, Savio G, Contiero B et al. (2019). Accuracy of an automated three‐dimensional technique for the computation of femoral angles in dogs. Vet Rec., 185(14):421-454.
  • Lehmann SV, Andrada E, Taszus R, Koch D, Fischer MS (2021). Three-dimensional motion of the patella in French bulldogs with and without medial patellar luxation. BMC Vet Res., 17:1-12.
  • Maviş CT, Selçuk ML (2022). Morphometric and computed tomographic investigation of ligamentum sacrotuberale in dogs. Vet Sci Pract. 17(3):103-107.
  • Sert ÖA (2009). Obtaining three-dimensional data from dissection, computed tomography and magnetic resonance images of the knee joint in New Zealand rabbits. Doctoral thesis. Selçuk University, Institute of Health Sciences, Konya.
  • Karabörk H (2009). Three-dimensional measurements of glenohumeral joint surfaces in sheep, cat and rabbit by photogrammetry. J A V A R., 8(7):1248-1251.
  • Díaz-Regañón D, Mendaza-De Cal R, García-Sancho M et al. (2024). Canine upper digestive tract 3d model: assessing its utility for anatomy and upper endoscopy learning. Anim., 14(7):1070.
  • Di-Donato BA, Dos-Santos AC, da Silveira EE et al. (2021). Three-dimensional digitalized and printed tongue models of the cow, dog, pig and horse for undergraduate veterinary education. Int J Morphol., 39(2):436-440.
  • Mendaza-DeCal RM, Rojo C (2021). 3D-printed model of the ovine stomach by surface scanning: evaluation for teaching veterinary anatomy, Int J Morphol., 39(5):1480-1486.
  • Torres MFP, Arce CP, Franco FM et al. (2024). Production of 3D-printed ovine stomach models for animal anatomy education. C L C S., 17(1):1339-1352.
  • Kırbaş Doğan G, Duman Çabakçor E (2025). A study on the morphometric, macroanatomical structure, and arterial vascularisation of the upper digestive system in rabbits (Oryctolagus cuniculus, Linnaeus 1758). Vet Med Sci., 11(4):e70505.
  • Englisch LM, Rott P, Lüpke M, Seifert H, Staszyk C (2018). Anatomy of equine incisors: pulp horns and subocclusal dentine thickness. E V J., 50(6):854-860.
  • Tyler EM, Nweeia MT, Whitaker BR et al. (2008). 3D Visualization of the Dental Anatomy of the Narwhal, Monodon monoceros. J B C., 34(3):E44-E48.
  • Rojo Ríos D, Ramírez Zarzosa G, Soler Laguía M et al. (2023). Creation of three-dimensional anatomical vascular and biliary models for the study of the feline liver (Felis silvestris catus L.): A comparative CT, volume rendering (Vr), cast and 3D printing study. Anim., 13(10):1573.
  • Demiraslan Y, Dayan M, Ertılav K, Akbulut Y, Özkadif S, Özgel Ö (2020). Computed Tomography Imaging of Cavum nasi and Sinus paranasales in the Tuj Sheep. Dicle Univ Vet Fak Derg., 13(1):1-8.
  • Turgut N (2021). Cross-sectional radiological and 3D reconstructive anatomy of cavum nasi and paranasal sinuses in Holstein cattle. Doctoral Thesis. Selcuk University Institute of Health Sciences, Konya, 37-46.
  • Köhler L, Schulz-Kornas E, Vervuert I et al. (2021). Volumetric measurements of paranasal sinuses and examination of sinonasal communication in healthy Shetland ponies: Anatomical and morphometric characteristics using computed tomography. BMC Vet Res., 17:1-8.
  • Nomir AG, El Sharaby A, Hanafy BG, Abumandour MM (2024). Head of Zebu cattle (Bos Taurus indicus): sectional anatomy and 3D computed tomography. BMC Vet Res., 20(1):318.
  • Atalar Ö, Koç M, Özkan ZE, Baygeldi SB, Kanmaz YA (2018). Three dimensional evaluation of trachea in Kangal dogs by computed tomography. Harran Univ Vet Fac J., 7(2):133-137.
  • Saber ASM, Kamal BM (2010). Computed tomography and 3D reconstruction of the respiratory organs of the Egyptian tortoise (Testudo kleinmanni). J Vet Anat., 3(1):1-15.
  • Dayan MO, Besoluk K (2011). Three-dimensional reconstruction from computed tomography images of respiratory system in New Zealand rabbits. Eurasian J Vet Sci, 27(3):145-148.
  • Eken E, Çorumluoğlu Ö, Paksoy Y, Beşoluk K, Kalaycı İ (2009). A study on evaluation of 3D virtual rabbit kidney models by multidetector computed tomography images. Anat., 3(1):40-44.
  • Atalar Ö, Koç M, Alklay AA, Arı HH (2017). Three dimensional examination of kidneys in Kangal dogs by computed tomography. Dicle Univ Vet Fak Derg., 10(1):24-29.
  • Halıgür A, Özkadif S (2019). Male genital organs in the red fox (Vulpes vulpes); Macroanatomic and three-dimentional reconstruction aspect. M A K U J Healt Sci Inst., 7(2):89-98.
  • Kang K, Kim K, So J et al (2020). The urethra of healthy female dogs can be normally narrowed due to the urethral flexure in retrograde CT urethrography. Vet Radiol Ultrasoun., 62(1):61-67.
  • Dalga S, Doğan GK, Akbulut Y, Çetin T, Kızılgöz V (2023). CT imaging, macroanatomical and morphometric analysis of os penis in Brown bear (Ursus arctos). Eurasian J Biol Chem Sci., 6(1):48-51.
  • Bozbıyık C, Kırbaş Doğan G (2023). Investigation of male genital system anatomy in the New Zealand rabbit (Oryctolagus cuniculus L.). Anat Histol Embryol., 52(3):381-392.
  • Oh M, Ban J, Lee Y et al. (2024). Development of three-dimensional canine hepatic tumor model based on computed tomographic angiography for simulation of transarterial embolization. Front Vet Sci., 10:1280028.
  • Rojo D, Vázquez JM, Sánchez C et al. (2020). Sectional anatomic and tomographic study of the feline abdominal cavity for obtaining a three-dimensional vascular model. I J V R., 21(4):279.
  • Spediacci C, Longo M, Specchi S et al. (2022). Computed tomographic appearance of transcaval ureter in two dogs and three cats: A novel CVC congenital malformation. Fron Vet Sci., 9:965185.
  • Borgeat K, Shearn AI, Payne JR, Hezzell M, Biglino G (2022). Three-dimensional printed models of the heart represent an opportunity for inclusive learning. J V M E., 49(3):346-352.
  • Alsafy MA, El-Gendy SA, Kamal BM et al. (2023). Heart ventricles of the dromedary camel (Camelus dromedarius): new insights from sectional anatomy, 3D computed tomography, and morphometry. BMC zool., 8(1):12.
  • Tsandev N, Bakici C, Vodenicharov A (2022). Evaluation of the compatibility between corrosion casts and 3D reconstruction of pig head arterial system on cone beam computed tomography. Vet J Ankara Univ., 69(4):419-424.
  • Rojo Ríos D, Ramírez Zarzosa G, Soler Laguía M et al. (2023). Anatomical and three-dimensional study of the female feline abdominal and pelvic vascular system using dissections, computed tomography angiography and magnetic resonance angiography. Vet Sci., 10(12):704.
  • Akdag R, Ozsoy U, Tüzün Y (2015). Etiology and pathogenesis of hydrocephalus. Turk Neurosurg., 5(1):15-18.
  • Hazar S, Yarkın F, Akan E (2000). Rabies and its importance. Flora., 5(3):159-167.
  • Schoenfeld-Tacher RM, Horn TJ, Scheviak TA, Royal KD, Hudson LC (2017). Evaluation of 3D additively manufactured canine brain models for teaching veterinary neuroanatomy. J V M E., 44(4):612-619.
  • Blázquez-Llorca L, Morales de Paz L, Martín-Orti R et al. (2023). The application of 3D anatomy for teaching veterinary clinical neurology. Anim., 13(10):1601.
  • Bolat D (2017). Three-dimensional reconstruction of the spinal cord of thoroughbred. Eurasian J Vet Sci., 33(2):127-129.
  • Aydoğdu S (2021). Three-dimensional reconstruction of 3 tesla magnetic resonance images of sheep brain. Doctoral Thesis. Selçuk University, Institute of Health Sciences, Konya.
  • Haroglu D, İşcan B, Düzler A (2022). Use of three dimensional (3D) printed models of sheep brain in online veterinary anatomy education. Int J Print., 6(3):370-381.
  • Ekim O, Bakici C, Akçay A, Algin O, Oto Ç (2024). The efficiency of 3d-printed dog brain ventricular models from 3 tesla (3t) magnetic resonance ımaging (mrı) for neuroanatomy education. Pak Vet J., 44(2):430-436.
  • Yıldız D (2024). Anatomy Mind Notes, 1.edition, Güneş Medical Bookstores, Ankara, 7-168.
  • Balcombe J (2001). Dissection: The scientific case for alternatives. J A A W S., 4(2):117-126.
  • Abd El‐Hameed ZS, El‐Shafey AAEF, Metwally MA, Abd El‐Samie HAER, Kassab A (2023). Anatomy of the rabbit inner ear using computed tomography and magnetic resonance imaging. Anat Histol Embryol., 52(3):403-410.
  • Nicholson DT, Chalk C, Funnell WRJ, Daniel SJ (2006). Can virtual reality improve anatomy education? A randomised controlled study of a computer‐generated three‐dimensional anatomical ear model. Med Educ., 40(11):1081-1087.
  • Wang J, Walter P, Baumgarten S (2022). Surgical anatomy of the small animal eye-3D reconstruction and ablation effect. İ O V S., 63(7):4517-F0304.
  • Pazos M, Yang H, Gardiner SK et al (2015). Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes. Exp Eye Res., 139:1-12.
  • Wu Y, Feng Y, Yang J et al. (2024). Anatomical and micro-CT measurement analysis of ocular volume and intraocular volume in adult Bama Miniature pigs, New Zealand rabbits, and Sprague-Dawley rats. Plos., 19(9):e0310830.
  • Fernandez-Carro E, Angenent M, Gracia-Cazaña T et al. (2022). Modeling an optimal 3d skin-on-chip within microfluidic devices for pharmacological studies. Pharm, 14(7):1417.
  • Chen C, Kim WK (2020). The application of micro-CT in egg-laying hen bone analysis: introducing an automated bone separation algorithm. Poult Sci., 99(11):5175-5183.
  • Bribiesca-Contreras F, Sellers WI (2017). Three-dimensional visualisation of the internal anatomy of the sparrowhawk (Accipiter nisus) forelimb using contrast-enhanced micro-computed tomography. Peer J., 5:e3039.
  • Sullivan SP, McGechie FR, Middleton KM, Holliday CM (2019). 3D muscle architecture of the pectoral muscles of European Starling (Sturnus vulgaris). İ O B., 1(1):oby010.
  • Petnehazy O, Csoka A, Fajtai D, Echols S, Donko T (2024). CT‐based 3D reconstruction and basic anatomical analysis of the 3D anatomy of the air sac system in domestic birds. Anat Histol Embryol., 53(2):e13022.
  • Ekim O, Oto Ç, Algın O, Bakıcı C (2013). High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 tesla MR unit and 15-channel transmit coil. Vet J Ankara Univ., 60(4):229-233.
  • Skieresz‐Szewczyk K, Cornillie P, Jackowiak H (2018). The development of lingual glands in the domestic duck (Anas platyrhynchos f. domestica): 3D‐reconstruction, LM, and SEM study. J Morphol., 279(3):319-329.

3d Modeling and Printing Technology in Veterinary Anatomy

Yıl 2025, Cilt: 18 Sayı: 2, 193 - 204, 31.12.2025
https://doi.org/10.47027/duvetfd.1741889

Öz

Anatomy examines the structure of living things, the organs within them, and the functioning of these organs within certain systems. Various materials are used when looking at these anatomic structures. Even though organs placed in formaldehyde, liquid foam soap, ethanol and citric acid are kept from decaying for a long time, inhaling this liquids or coming into direct contact with it poses a health risk. Today, the advancement of technology and its use in almost all areas has been reflected in veterinary anatomy field. Anatomical structures can be examined in 3D using imaging methods and various software. This allows us to examine anatomical structures that are difficult to access and small-sized anatomical formations. Materials can be obtained from these models using various 3D printing devices. This makes it possible to work in more hygienic conditions with less contamination with harmful chemicals such as formaldehyde. The presented study systematically compiles scientific research related to 3D modeling and printing technology in the field of veterinary anatomy. An attempt was made to explain the current state of 3D in veterinary anatomy through systematically compiled studies on the basis of animal species. It is expected to serve as a guide for future studies in this area.

Kaynakça

  • Li F, Liu C, Song X, Huan Y, Gao S, Jiang Z (2018). Production of accurate skeletal models of domestic animals using three‐dimensional scanning and printing technology. Anat Sci Educ., 11(1):73-80.
  • Özkadif S (2015). Some veterinary anatomical studies using three-dimensional reconstruction. Batman Univ Yaşam Bilim Derg., 5(2):288-295.
  • Singh N, Banga HS (2023). Librarian-scientist (s) collaboration in harnessing the potential of augmented reality (AR) and virtual reality (VR) for veterinary and animal sciences education and training: A Success Story of Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, I F L A.
  • Tan S, Hu A, Wilson T, Ladak H, Haase P, Fung K (2012). Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners. J LO., 126(4):395-401.
  • Berney S, Bétrancourt M, Molinari G, Hoyek N (2015). How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models. Anat Sci Educ., 8(5):452-462.
  • Elad D, Einav S (1990). Three-dimensional measurement of biological surfaces. ISPRS., 45(4):247-266.
  • Mitchell HL (1995). Applications of digital photogrammetry to medical investigations. ISPRS., 50(3):27-36.
  • Preece D, Williams SB, Lam R, Weller R (2013). “Let's get physical”: advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ., 6(4):216-224.
  • Königh HE, Liebich HG (2022). Domestic Animals Veterinary Anatomy Lecture and Color Atlas, 7. edition, Medipres publishing house, Ankara.
  • Ohlerth S, Scharf G (2007). Computed tomography in small animals–Basic principles and state of the art applications. TVJ., 173(2):254-271.
  • Dayan MO (2009). Obtaining three-dimensional images from computed tomography images of the stomach and intestines in New Zealand rabbits. Doctoral thesis. Selcuk University Institute of Health Sciences, Konya., 30-45.
  • Kaya T, Adapınar B, Özkan RAGIP (1997). Basic Radiology Technique, 3.edition, Güneş & Nobel Bookstore, Bursa.
  • Alkan Z (1999). Computerized Tomography. Veterinary Radiology, Mina Ajans, Ankara.
  • Girling SJ (2002). Mammalian Imaging and Anatomy, BSAVA exotic pets handbook, 2.edition, Wiley Blackwell publication, Oxford, UK, 120-130.
  • Memarian P, Pishavar E, Zanotti F et al. (2022). Active materials for 3D printing in small animals: Current modalities and future directions for orthopedic applications. Int J Mol Sci., 23(3):1045.
  • Van Epps A, Huston D, Sherrill J, Alvar A, Bowen A (2015). How 3D printers support teaching in engineering, technology and beyond. Bulletin of the Association for Information Science and Technology, 42(1):16-20.
  • Anonymous: https://www.ntboxmag.com/3d-yazicinin-mucidi-chuck-hull/ (Access: 21.04.2025).
  • Vickram AS, Shofia S, Manikandan S et al. (2025). 3D bio-printed scaffolds and smart implants: evaluating functional performance in animal surgery models. Annals of Medicine & Surgery, 87(6):3618-3634.
  • Dickson J, Gardiner A, Rhind S (2022). Veterinary anatomy education and spatial ability: where now and where next? J Vet Med Educ., 49(3):297-305.
  • Bahadir A, Yildiz H (2020). Veterinary Anatomy Movement System & Internal Organs, 5.edition, Ezgi Bookstore, Bursa, 80-250.
  • Kahraman S (2012). Three-dimensional modeling of computed tomography images of ossa membri thoracici in rats. Master's Thesis. Selcuk University, Institute of Health Sciences, Konya.
  • Demircioglu I, Gezer Ince N (2020). Three‐dimensional modelling of computed tomography images of limb bones in gazelles (Gazella subgutturosa). Anat Histol Embryol., 49(6):695-707.
  • Yılmaz O, Soygüder Z, Yavuz A (2020). Three-dimensional investigation by computed tomography of the clavicle and scapula in Van cats. Van Vet J., 31(1):34-41.
  • Yılmaz O, Soygüder Z, Yavuz A (2020). Anatomical, morphometric and volumetric examination of the humerus and antebrachium in Van cats by computerized tomography. Harran Univ Vet Fac J., 9(2):161-169.
  • Yılmaz O, Soygüder Z, Yavuz A (2020). Three-dimensional examination of the skeleton manus in Van cats by computerized tomography. Ataturk University J Vet Sci., 15(2):167-176.
  • Yilmaz O, Koçyiğit A, Kırbaş Doğan G, Kanik B (2025). Three‐dimensional morphometric analysis of the metatarsal and phalangeal bones in Van cats. Anat Histol Embryol., 54(1):e70006.
  • Baygeldi SB, Güzel BC, Kanmaz YA, Yilmaz S (2022). Evaluation of skull and mandible morphometric measurements and three‐dimensional modelling of computed tomographic images of porcupine (Hystrix cristata). Anat Histol Embryol., 51(4):549-556.
  • Koçyiğit A (2023). 3D Reconstruction of Some Extremity Bones in New Zealand Rabbits with 3D Scanner and Computerized Tomography. Doctoral Thesis. Selçuk University, Institute of Health Sciences, Konya.
  • İşbilir F, Güzel BC (2023). Investigation of metapodium and acropodium bones in Siirt-colored Mohair goat (Capra hircus) by 3D Modeling. Harran Univ Vet Fac J., 12(2):245-252.
  • İşbilir F, Güzel BC (2023). Morphometric analysis of the mandible of ram and ewe Romanov sheep (Ovis aries) with 3D modelling: A CT study. Anat Histol Embryol., 52(5):742-751.
  • Selcuk ML (2023). Computed tomography reconstruction and morphometric analysis of the humerus and femur in New Zealand rabbits, Eurasian J Vet Sci., 39(4):164-170.
  • Demircioğlu İ, Kırbaş Doğan G, Aksünger Karaavci F, Gürbüz İ, Demiraslan Y (2020). Three-dimensional modelling and morphometric investigation of computed tomography images of Brown bear’s (Ursus arctos) ossa cruris (Zeugopodium). Folia Morphol., 79(4):811-816.
  • Yilmaz O, Soyguder Z, Yavuz A, Dundar I (2020). Three‐dimensional computed tomographic examination of pelvic cavity in Van Cats and its morphometric investigation. Anat Histol Embryol., 49(1):60-66.
  • Atalar Ö, Koç M, Yüksel M, Arkaş AA (2017). Three-dimensional evaluation of the pelvic cavity in Kangal dogs by computerized tomography. F Ü Sağ Bil Vet Derg., 31:105-109.
  • Bertti JVP, Silveira EE, Assis Neto ACD (2020). Reconstrução e impressão 3D do neurocrânio de cão com o uso de tomografia computadorizada como ferramenta para auxiliar no ensino da anatomia veterinária. Arq Bras Med Vet Zootec., 72:1653-1658.
  • Baş Ekici H (2023). Three-dimensional Modeling and Investigation of Morphometric Features of the Skull of Akkaraman and Kangal Akkaraman Sheep Using Computerized Tomography Images. Doctoral Thesis. Selçuk University Institute of Health Sciences, Konya, 30-55.
  • İnce NG, Demircioğlu İ, Yılmaz B, Ağyar A, Dusak A (2018). Three-dimensional modeling of the cranium in seagulls (Laridae spp.). Harran Univ Vet Fac J., 7(1):98-101.
  • Pereira F MAM, Bete SBDS, Inamassu LR, Mamprim MJ, Schimming BC (2020). Anatomy of the skull in the capybara (Hydrochoerus hydrochaeris) using radiography and 3D computed tomography. Anat Histol Embryol., 49(3):317-324.
  • Bakıcı C, Akgün RO, Oto Ç (2019). The applicability and efficiency of 3-dimensional printing models of hyoid bone in comparative veterinary anatomy education. J A V M A., 90(2):71-75.
  • Claridge HAH, Piercy RJ, Parry A, Weller R (2010). The 3D anatomy of the cervical articular process joints in the horse and their topographical relationship to the spinal cord. E V J., 42(8):726-731.
  • Özkadif S, Halıgür A (2019). Investigation of morphometric features of fox (Vulpes vulpes) cervical vertebrae using three-dimensional reconstruction. M A E Vet Fak Derg., 4(2):57-61.
  • Dursun N (2007). Anatomy of Domestic Birds, 4.edition, Medisan Publishing House, Ankara, 20-100.
  • Longo F, Savio G, Contiero B et al. (2019). Accuracy of an automated three‐dimensional technique for the computation of femoral angles in dogs. Vet Rec., 185(14):421-454.
  • Lehmann SV, Andrada E, Taszus R, Koch D, Fischer MS (2021). Three-dimensional motion of the patella in French bulldogs with and without medial patellar luxation. BMC Vet Res., 17:1-12.
  • Maviş CT, Selçuk ML (2022). Morphometric and computed tomographic investigation of ligamentum sacrotuberale in dogs. Vet Sci Pract. 17(3):103-107.
  • Sert ÖA (2009). Obtaining three-dimensional data from dissection, computed tomography and magnetic resonance images of the knee joint in New Zealand rabbits. Doctoral thesis. Selçuk University, Institute of Health Sciences, Konya.
  • Karabörk H (2009). Three-dimensional measurements of glenohumeral joint surfaces in sheep, cat and rabbit by photogrammetry. J A V A R., 8(7):1248-1251.
  • Díaz-Regañón D, Mendaza-De Cal R, García-Sancho M et al. (2024). Canine upper digestive tract 3d model: assessing its utility for anatomy and upper endoscopy learning. Anim., 14(7):1070.
  • Di-Donato BA, Dos-Santos AC, da Silveira EE et al. (2021). Three-dimensional digitalized and printed tongue models of the cow, dog, pig and horse for undergraduate veterinary education. Int J Morphol., 39(2):436-440.
  • Mendaza-DeCal RM, Rojo C (2021). 3D-printed model of the ovine stomach by surface scanning: evaluation for teaching veterinary anatomy, Int J Morphol., 39(5):1480-1486.
  • Torres MFP, Arce CP, Franco FM et al. (2024). Production of 3D-printed ovine stomach models for animal anatomy education. C L C S., 17(1):1339-1352.
  • Kırbaş Doğan G, Duman Çabakçor E (2025). A study on the morphometric, macroanatomical structure, and arterial vascularisation of the upper digestive system in rabbits (Oryctolagus cuniculus, Linnaeus 1758). Vet Med Sci., 11(4):e70505.
  • Englisch LM, Rott P, Lüpke M, Seifert H, Staszyk C (2018). Anatomy of equine incisors: pulp horns and subocclusal dentine thickness. E V J., 50(6):854-860.
  • Tyler EM, Nweeia MT, Whitaker BR et al. (2008). 3D Visualization of the Dental Anatomy of the Narwhal, Monodon monoceros. J B C., 34(3):E44-E48.
  • Rojo Ríos D, Ramírez Zarzosa G, Soler Laguía M et al. (2023). Creation of three-dimensional anatomical vascular and biliary models for the study of the feline liver (Felis silvestris catus L.): A comparative CT, volume rendering (Vr), cast and 3D printing study. Anim., 13(10):1573.
  • Demiraslan Y, Dayan M, Ertılav K, Akbulut Y, Özkadif S, Özgel Ö (2020). Computed Tomography Imaging of Cavum nasi and Sinus paranasales in the Tuj Sheep. Dicle Univ Vet Fak Derg., 13(1):1-8.
  • Turgut N (2021). Cross-sectional radiological and 3D reconstructive anatomy of cavum nasi and paranasal sinuses in Holstein cattle. Doctoral Thesis. Selcuk University Institute of Health Sciences, Konya, 37-46.
  • Köhler L, Schulz-Kornas E, Vervuert I et al. (2021). Volumetric measurements of paranasal sinuses and examination of sinonasal communication in healthy Shetland ponies: Anatomical and morphometric characteristics using computed tomography. BMC Vet Res., 17:1-8.
  • Nomir AG, El Sharaby A, Hanafy BG, Abumandour MM (2024). Head of Zebu cattle (Bos Taurus indicus): sectional anatomy and 3D computed tomography. BMC Vet Res., 20(1):318.
  • Atalar Ö, Koç M, Özkan ZE, Baygeldi SB, Kanmaz YA (2018). Three dimensional evaluation of trachea in Kangal dogs by computed tomography. Harran Univ Vet Fac J., 7(2):133-137.
  • Saber ASM, Kamal BM (2010). Computed tomography and 3D reconstruction of the respiratory organs of the Egyptian tortoise (Testudo kleinmanni). J Vet Anat., 3(1):1-15.
  • Dayan MO, Besoluk K (2011). Three-dimensional reconstruction from computed tomography images of respiratory system in New Zealand rabbits. Eurasian J Vet Sci, 27(3):145-148.
  • Eken E, Çorumluoğlu Ö, Paksoy Y, Beşoluk K, Kalaycı İ (2009). A study on evaluation of 3D virtual rabbit kidney models by multidetector computed tomography images. Anat., 3(1):40-44.
  • Atalar Ö, Koç M, Alklay AA, Arı HH (2017). Three dimensional examination of kidneys in Kangal dogs by computed tomography. Dicle Univ Vet Fak Derg., 10(1):24-29.
  • Halıgür A, Özkadif S (2019). Male genital organs in the red fox (Vulpes vulpes); Macroanatomic and three-dimentional reconstruction aspect. M A K U J Healt Sci Inst., 7(2):89-98.
  • Kang K, Kim K, So J et al (2020). The urethra of healthy female dogs can be normally narrowed due to the urethral flexure in retrograde CT urethrography. Vet Radiol Ultrasoun., 62(1):61-67.
  • Dalga S, Doğan GK, Akbulut Y, Çetin T, Kızılgöz V (2023). CT imaging, macroanatomical and morphometric analysis of os penis in Brown bear (Ursus arctos). Eurasian J Biol Chem Sci., 6(1):48-51.
  • Bozbıyık C, Kırbaş Doğan G (2023). Investigation of male genital system anatomy in the New Zealand rabbit (Oryctolagus cuniculus L.). Anat Histol Embryol., 52(3):381-392.
  • Oh M, Ban J, Lee Y et al. (2024). Development of three-dimensional canine hepatic tumor model based on computed tomographic angiography for simulation of transarterial embolization. Front Vet Sci., 10:1280028.
  • Rojo D, Vázquez JM, Sánchez C et al. (2020). Sectional anatomic and tomographic study of the feline abdominal cavity for obtaining a three-dimensional vascular model. I J V R., 21(4):279.
  • Spediacci C, Longo M, Specchi S et al. (2022). Computed tomographic appearance of transcaval ureter in two dogs and three cats: A novel CVC congenital malformation. Fron Vet Sci., 9:965185.
  • Borgeat K, Shearn AI, Payne JR, Hezzell M, Biglino G (2022). Three-dimensional printed models of the heart represent an opportunity for inclusive learning. J V M E., 49(3):346-352.
  • Alsafy MA, El-Gendy SA, Kamal BM et al. (2023). Heart ventricles of the dromedary camel (Camelus dromedarius): new insights from sectional anatomy, 3D computed tomography, and morphometry. BMC zool., 8(1):12.
  • Tsandev N, Bakici C, Vodenicharov A (2022). Evaluation of the compatibility between corrosion casts and 3D reconstruction of pig head arterial system on cone beam computed tomography. Vet J Ankara Univ., 69(4):419-424.
  • Rojo Ríos D, Ramírez Zarzosa G, Soler Laguía M et al. (2023). Anatomical and three-dimensional study of the female feline abdominal and pelvic vascular system using dissections, computed tomography angiography and magnetic resonance angiography. Vet Sci., 10(12):704.
  • Akdag R, Ozsoy U, Tüzün Y (2015). Etiology and pathogenesis of hydrocephalus. Turk Neurosurg., 5(1):15-18.
  • Hazar S, Yarkın F, Akan E (2000). Rabies and its importance. Flora., 5(3):159-167.
  • Schoenfeld-Tacher RM, Horn TJ, Scheviak TA, Royal KD, Hudson LC (2017). Evaluation of 3D additively manufactured canine brain models for teaching veterinary neuroanatomy. J V M E., 44(4):612-619.
  • Blázquez-Llorca L, Morales de Paz L, Martín-Orti R et al. (2023). The application of 3D anatomy for teaching veterinary clinical neurology. Anim., 13(10):1601.
  • Bolat D (2017). Three-dimensional reconstruction of the spinal cord of thoroughbred. Eurasian J Vet Sci., 33(2):127-129.
  • Aydoğdu S (2021). Three-dimensional reconstruction of 3 tesla magnetic resonance images of sheep brain. Doctoral Thesis. Selçuk University, Institute of Health Sciences, Konya.
  • Haroglu D, İşcan B, Düzler A (2022). Use of three dimensional (3D) printed models of sheep brain in online veterinary anatomy education. Int J Print., 6(3):370-381.
  • Ekim O, Bakici C, Akçay A, Algin O, Oto Ç (2024). The efficiency of 3d-printed dog brain ventricular models from 3 tesla (3t) magnetic resonance ımaging (mrı) for neuroanatomy education. Pak Vet J., 44(2):430-436.
  • Yıldız D (2024). Anatomy Mind Notes, 1.edition, Güneş Medical Bookstores, Ankara, 7-168.
  • Balcombe J (2001). Dissection: The scientific case for alternatives. J A A W S., 4(2):117-126.
  • Abd El‐Hameed ZS, El‐Shafey AAEF, Metwally MA, Abd El‐Samie HAER, Kassab A (2023). Anatomy of the rabbit inner ear using computed tomography and magnetic resonance imaging. Anat Histol Embryol., 52(3):403-410.
  • Nicholson DT, Chalk C, Funnell WRJ, Daniel SJ (2006). Can virtual reality improve anatomy education? A randomised controlled study of a computer‐generated three‐dimensional anatomical ear model. Med Educ., 40(11):1081-1087.
  • Wang J, Walter P, Baumgarten S (2022). Surgical anatomy of the small animal eye-3D reconstruction and ablation effect. İ O V S., 63(7):4517-F0304.
  • Pazos M, Yang H, Gardiner SK et al (2015). Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes. Exp Eye Res., 139:1-12.
  • Wu Y, Feng Y, Yang J et al. (2024). Anatomical and micro-CT measurement analysis of ocular volume and intraocular volume in adult Bama Miniature pigs, New Zealand rabbits, and Sprague-Dawley rats. Plos., 19(9):e0310830.
  • Fernandez-Carro E, Angenent M, Gracia-Cazaña T et al. (2022). Modeling an optimal 3d skin-on-chip within microfluidic devices for pharmacological studies. Pharm, 14(7):1417.
  • Chen C, Kim WK (2020). The application of micro-CT in egg-laying hen bone analysis: introducing an automated bone separation algorithm. Poult Sci., 99(11):5175-5183.
  • Bribiesca-Contreras F, Sellers WI (2017). Three-dimensional visualisation of the internal anatomy of the sparrowhawk (Accipiter nisus) forelimb using contrast-enhanced micro-computed tomography. Peer J., 5:e3039.
  • Sullivan SP, McGechie FR, Middleton KM, Holliday CM (2019). 3D muscle architecture of the pectoral muscles of European Starling (Sturnus vulgaris). İ O B., 1(1):oby010.
  • Petnehazy O, Csoka A, Fajtai D, Echols S, Donko T (2024). CT‐based 3D reconstruction and basic anatomical analysis of the 3D anatomy of the air sac system in domestic birds. Anat Histol Embryol., 53(2):e13022.
  • Ekim O, Oto Ç, Algın O, Bakıcı C (2013). High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 tesla MR unit and 15-channel transmit coil. Vet J Ankara Univ., 60(4):229-233.
  • Skieresz‐Szewczyk K, Cornillie P, Jackowiak H (2018). The development of lingual glands in the domestic duck (Anas platyrhynchos f. domestica): 3D‐reconstruction, LM, and SEM study. J Morphol., 279(3):319-329.
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Anatomi ve Fizyoloji, Görüntüleme Sistemleri
Bölüm Derleme
Yazarlar

Gülseren Kırbaş Doğan 0000-0003-3770-9956

Evin Kaçmaz 0009-0009-0920-9066

Gönderilme Tarihi 14 Temmuz 2025
Kabul Tarihi 10 Ekim 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Kırbaş Doğan, G., & Kaçmaz, E. (2025). 3d Modeling and Printing Technology in Veterinary Anatomy. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 18(2), 193-204. https://doi.org/10.47027/duvetfd.1741889
AMA Kırbaş Doğan G, Kaçmaz E. 3d Modeling and Printing Technology in Veterinary Anatomy. Dicle Üniv Vet Fak Derg. Aralık 2025;18(2):193-204. doi:10.47027/duvetfd.1741889
Chicago Kırbaş Doğan, Gülseren, ve Evin Kaçmaz. “3d Modeling and Printing Technology in Veterinary Anatomy”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18, sy. 2 (Aralık 2025): 193-204. https://doi.org/10.47027/duvetfd.1741889.
EndNote Kırbaş Doğan G, Kaçmaz E (01 Aralık 2025) 3d Modeling and Printing Technology in Veterinary Anatomy. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18 2 193–204.
IEEE G. Kırbaş Doğan ve E. Kaçmaz, “3d Modeling and Printing Technology in Veterinary Anatomy”, Dicle Üniv Vet Fak Derg, c. 18, sy. 2, ss. 193–204, 2025, doi: 10.47027/duvetfd.1741889.
ISNAD Kırbaş Doğan, Gülseren - Kaçmaz, Evin. “3d Modeling and Printing Technology in Veterinary Anatomy”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18/2 (Aralık2025), 193-204. https://doi.org/10.47027/duvetfd.1741889.
JAMA Kırbaş Doğan G, Kaçmaz E. 3d Modeling and Printing Technology in Veterinary Anatomy. Dicle Üniv Vet Fak Derg. 2025;18:193–204.
MLA Kırbaş Doğan, Gülseren ve Evin Kaçmaz. “3d Modeling and Printing Technology in Veterinary Anatomy”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, c. 18, sy. 2, 2025, ss. 193-04, doi:10.47027/duvetfd.1741889.
Vancouver Kırbaş Doğan G, Kaçmaz E. 3d Modeling and Printing Technology in Veterinary Anatomy. Dicle Üniv Vet Fak Derg. 2025;18(2):193-204.