Araştırma Makalesi
BibTex RIS Kaynak Göster

Melanopsis praemorsa (Linnaeus, 1758)’nın Manto Dokusu Üzerine Glifosatın Histopatolojik ve Ultrayapısal Etkileri

Yıl 2025, Cilt: 18 Sayı: 2, 124 - 129, 31.12.2025
https://doi.org/10.47027/duvetfd.1762232

Öz

Bu çalışmanın amacı, tatlı su ekosistemlerindeki pestisit kirliliğini araştırmak ve M. praemorsa'nın biyoindikatör olarak potansiyelini değerlendirmektir. Çalışmada, 30 günlük bir maruz kalma süresince öldürücü olmayan glifosat konsantrasyonlarına maruz bırakılan tatlı su salyangozu Melanopsis praemorsa'nın (Linnaeus, 1758) manto dokusundaki histopatolojik ve ultrastrüktürel değişiklikler incelenmiştir. Deney dört gruptan oluşmuştur: bir kontrol grubu ve üç glifosat grubu (0,933 mg/L, 1,867 mg/L ve 4,666 mg/L). Her gruba rastgele 30 benzer büyüklükte salyangoz atandı ve manto dokuları maruziyetin 10., 20. ve 30. günlerinde örneklendi. Fiksasyon/işlemden sonra, dokular ışık mikroskobu ve TEM ile incelendi. Histopatolojik bulgular arasında epitel deskuamasyonu, kas liflerinin atrofisi, sillerin dejenerasyonu, lipit vakuolizasyonunun artması ve nekroz. Ultrastrüktürel düzeyde mitokondriyal dejenerasyon, nükleer anormallikler ve hücresel lizis gözlendi. Manto dokusundaki lezyonların şiddeti, glifosat konsantrasyonuna ve maruz kalma süresine bağlı olarak arttı

Proje Numarası

DÜBAP- FEN.18.005

Kaynakça

  • Schwarzenbach RP, Escher BI, Fenner K, et al. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790):1072-7.
  • Bouétard A, Côte J, Besnard AL, Collinet M, Coutellec MA (2014). Environmental Versus Anthropogenic Effects on Population Adaptive Divergence in the Freshwater Snail Lymnaea stagnalis. PLOS One, 9(9):e106670.
  • Strilbyska OM, Tsiumpala SA, Kozachyshyn II, et al. (2022). The effects of low-toxic herbicide Roundup and glyphosate on mitochondria. EXCLI J, 21:183–196.
  • Schönbrunn E, Eschenburg S, Shuttleworth WA, et al. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. PNAS, 98(4):1376-1380.
  • Gower SA, Loux MM, Cardina J, Harrison SK (2002). Effect of Planting Date, Residual Herbicide, and Postemergence Application Timing on Weed Control and Grain Yield in Glyphosate-Tolerant Corn (Zea mays). Weed Technol., 16(3):488–494.
  • Steinrücken H, Amrhein N (1980). The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun. 94(4):1207-1212.
  • Otludil B, Otludil B (2025). The Effects of Glyphosate on Thermotolerant Bacillus subtilis. Applied Ecology and Environmental Research, 23(3):5799-5808.
  • Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R (2012). Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food. Chem., 60(42):10375–10397.
  • Mertens M, Höss S, Neumann G, Afzal J, Reichenbecher W (2018). Glyphosate, a chelating agent—relevant for ecological risk assessment? Environ Sci Pollut Res Int., 25(6): 5298–5317.
  • Giesy JP, Dobson S, Solomon KR (2000). Ecotoxicological risk assessment for Roundup® herbicide. Rev Environ Contam Toxico1., 67:35–120.
  • Székács A, Mörtl M, Darvas B (2015) Monitoring Pesticide Residues in Surface and Ground Water in Hungary: Surveys in 1990–2015. Journal of Chemistry, 2015:1-15.
  • Contardo-Jara V, Klingelmann E, Wiegand C (2009). Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ Pollut., 157(1):57-63.
  • Moraitis ML, Tsikopoulou I, Geropoulos A (2018). Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling. Mar. Environ. Res., 140:10–17.
  • Otludil B, Ayaz S (2020). Efect of Copper Sulphate (CuSO4) on Freshwater Snail, Physa acuta Draparnaud, 1805: A Histopathological Evaluation. Bull. Environ. Cont. Toxicol., 104(6):738-747.
  • Bürçün-Karakaş S, Otludil B (2020). Accumulation and histopathological effects of cadmium on the great pond snail Lymnaea stagnalis Linnaeus, 1758 (Gastropoda: Pulmonata). Environ Toxicol Pharmacol., 78:103403.
  • Dhiman V, Pant D (2021). Environmental biomonitoring by snails: Review. Biomarkers, 26(3):221-239.
  • Melo LEL, Coler RA, Watanabe T, Batalla J (2000). Developing the gastropod Pomacea lineata (Spix) as a toxicity test organism. Hydrobiologia, 429:73–78.
  • Downs CA, Dillon RT, Fauth JE, Woodley CM (2001). A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors. J. Exp. Mar. Biol. Ecol., 259(2):189–214.
  • Nanthanawat P, Insuwan V, Prasatkaew W, Nanuam J, Meemon P, Thanomsit C (2024). Adverse effects of glyphosate-based herbicide on hatching rate, morphological alterations, and acetylcholinesterase (AChE) expression in golden apple snail eggs. Aquatic Toxicology, 277:107162.
  • Ekin İ (2025). First Record of Lymnaea stagnalis (Linnaeus, 1758) (Gastropoda: Lymnaeidae) from Urban Park Ponds in Diyarbakır, Türkiye. American Malacological Bulletin. 42(1):1-5.
  • Ekin İ, Başhan M, Şeşen R (2011). Possible seasonal variations of the fatty acid composition from Melanopsis praemorsa (L., 1865) (Gastropoda: Prosobranchia) from the Southeast Anatolia, Turkey. Turkish Journal of Biology. 35(2):203-213.
  • APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
  • Demirci Ö, Çakmak F, Özkan Aİ (2020). Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. ADYU J SCI., 10(1):10-21.
  • Gurr E (1972). Biological Staining Methods. Kent Printers. 143. Tonbridge.
  • Lajtner J, Erben R, Klobucar GIV (1996). Histopathological Effects of Phenol on the Digestive Gland of Amphimelania holandri Fér. (Gastropoda, Prosobranchia). Bull Environ Contam Toxicol., 57(3):458–464.
  • Otitoloju AA, Ajikobi DO, Egonmwan RI (2009). Histopathology and Bioaccumulation of Heavy Metals (Cu & Pb) in the Giant land snail, Archachatina marginata (Swainson). Open Environ Poll Toxicol J., 2:79-88.
  • Otludil B, Bürçün-Karakaş S (2024). Histopathological Evaluation of the Curative Effects of EDTA on Lymnaea stagnalis Exposed to Subacute Cadmium. Bull. Environ. Cont. Toxicol., 112(84):1-7.
  • Arslan P, Yıldırım MZ, Günal AÇ (2023). The Effects of Fipronil on Glutathione and Histology of Freshwater Snails. KSU J. Agric Nat., 26(6):1436-1442.
  • Canesi L, Fabbri E (2015). Environmental effects of BPA: Focus on aquatic species. Dose Response, 13(3): 13(3):1-14.
  • Han G, Bu D, Kong R, Huang K, Liu C (2024). Toxic responses of environmental concentrations of bifenthrin in larval freshwater snail Bellamya aeruginosa. Chemosphere, 355:141863.
  • Vinaykamal DD (2023). Evaluation of Imidacloprid-induced toxicity and lipid peroxidation in the freshwater bivalve, Lamellidens marginalis. Int. J. Aquat. Biol., 11(2):124-130.
  • Gupta PK, Durve VS (1986). Histopathological changes induced by pentachlorophenol and sodium pentachlorophenate in the mantle of the freshwater snail Viviparus bengalensis (L). Acta Hydrochim. Hydrobiol., 14(4):433–437.
  • Tokat Ş, Otludil B (2025). Investigation of the Histopathological Effects of 5-Fluorouracil and Cisplatin Exposure on the Mantle Tissue of Melanopsis praemorsa Linnaeus, 1758 (Gastropoda: Prosobranchia). NaSTech, 4(1):387-395.
  • Marigómez I, Soto M, Cancio I, Orbea A, Garmendia L, Cajaraville MP (2006). Cell and tissue biomarkers in mussel, and histopathology in hake and anchovy from Bay of Biscay after the Prestige oil spill (Monitoring Campaign 2003). Mar Pollut Bull., 53(5–7): 287–304.
  • Kure JT, Jørgensen ML, Bjerregaard P (2018). Glyphosate and glyphosate-based herbicides induce cytotoxicity and oxidative stress in the freshwater gastropod Lymnaea stagnalis. Aquatic Toxicology. 194:141-150.
  • Cajaraville MP, Diez G, Marigomez JA, Angulo E (1991). Consequences of keeping Mytilus in the laboratory as assessed by different cellular condition indices. Helgoland Marine Research. 45:445-464.

Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758)

Yıl 2025, Cilt: 18 Sayı: 2, 124 - 129, 31.12.2025
https://doi.org/10.47027/duvetfd.1762232

Öz

This study aimed to investigate pesticide pollution in freshwater ecosystems and to assess the potential of M. praemorsa as a bioindicator. Study examined the histopathological and ultrastructural changes in the mantle tissue of the freshwater snail Melanopsis praemorsa (Linnaeus, 1758) exposed to sublethal concentrations of glyphosate during a 30-day exposure. The experiment consisted of four groups: a control group and three glyphosate groups (0.933 mg/L, 1.867 mg/L, and 4.666 mg/L). Each group was randomly assigned 30 similarly sized snails. and mantle tissues were sampled on days 10, 20, and 30 of exposure. After fixation/processing, tissues were examined by light microscopy and TEM. Histopathological findings included epithelial desquamation, atrophy of muscle fibers, degeneration of cilia, increased lipid vacuolization, and necrosis. At the ultrastructural level, mitochondrial degeneration, nuclear abnormalities, and cellular lysis were observed. The severity of lesions in the mantle tissue increased depending on glyphosate concentration and exposure duration.

Etik Beyan

Since a common invertebrate species was used in this study, animal ethics committee approval was not required.

Destekleyen Kurum

This study was funded by the University of Dicle (DÜBAP- FEN.18.005), providing financial support for the research.

Proje Numarası

DÜBAP- FEN.18.005

Kaynakça

  • Schwarzenbach RP, Escher BI, Fenner K, et al. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790):1072-7.
  • Bouétard A, Côte J, Besnard AL, Collinet M, Coutellec MA (2014). Environmental Versus Anthropogenic Effects on Population Adaptive Divergence in the Freshwater Snail Lymnaea stagnalis. PLOS One, 9(9):e106670.
  • Strilbyska OM, Tsiumpala SA, Kozachyshyn II, et al. (2022). The effects of low-toxic herbicide Roundup and glyphosate on mitochondria. EXCLI J, 21:183–196.
  • Schönbrunn E, Eschenburg S, Shuttleworth WA, et al. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. PNAS, 98(4):1376-1380.
  • Gower SA, Loux MM, Cardina J, Harrison SK (2002). Effect of Planting Date, Residual Herbicide, and Postemergence Application Timing on Weed Control and Grain Yield in Glyphosate-Tolerant Corn (Zea mays). Weed Technol., 16(3):488–494.
  • Steinrücken H, Amrhein N (1980). The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun. 94(4):1207-1212.
  • Otludil B, Otludil B (2025). The Effects of Glyphosate on Thermotolerant Bacillus subtilis. Applied Ecology and Environmental Research, 23(3):5799-5808.
  • Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R (2012). Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food. Chem., 60(42):10375–10397.
  • Mertens M, Höss S, Neumann G, Afzal J, Reichenbecher W (2018). Glyphosate, a chelating agent—relevant for ecological risk assessment? Environ Sci Pollut Res Int., 25(6): 5298–5317.
  • Giesy JP, Dobson S, Solomon KR (2000). Ecotoxicological risk assessment for Roundup® herbicide. Rev Environ Contam Toxico1., 67:35–120.
  • Székács A, Mörtl M, Darvas B (2015) Monitoring Pesticide Residues in Surface and Ground Water in Hungary: Surveys in 1990–2015. Journal of Chemistry, 2015:1-15.
  • Contardo-Jara V, Klingelmann E, Wiegand C (2009). Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ Pollut., 157(1):57-63.
  • Moraitis ML, Tsikopoulou I, Geropoulos A (2018). Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling. Mar. Environ. Res., 140:10–17.
  • Otludil B, Ayaz S (2020). Efect of Copper Sulphate (CuSO4) on Freshwater Snail, Physa acuta Draparnaud, 1805: A Histopathological Evaluation. Bull. Environ. Cont. Toxicol., 104(6):738-747.
  • Bürçün-Karakaş S, Otludil B (2020). Accumulation and histopathological effects of cadmium on the great pond snail Lymnaea stagnalis Linnaeus, 1758 (Gastropoda: Pulmonata). Environ Toxicol Pharmacol., 78:103403.
  • Dhiman V, Pant D (2021). Environmental biomonitoring by snails: Review. Biomarkers, 26(3):221-239.
  • Melo LEL, Coler RA, Watanabe T, Batalla J (2000). Developing the gastropod Pomacea lineata (Spix) as a toxicity test organism. Hydrobiologia, 429:73–78.
  • Downs CA, Dillon RT, Fauth JE, Woodley CM (2001). A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors. J. Exp. Mar. Biol. Ecol., 259(2):189–214.
  • Nanthanawat P, Insuwan V, Prasatkaew W, Nanuam J, Meemon P, Thanomsit C (2024). Adverse effects of glyphosate-based herbicide on hatching rate, morphological alterations, and acetylcholinesterase (AChE) expression in golden apple snail eggs. Aquatic Toxicology, 277:107162.
  • Ekin İ (2025). First Record of Lymnaea stagnalis (Linnaeus, 1758) (Gastropoda: Lymnaeidae) from Urban Park Ponds in Diyarbakır, Türkiye. American Malacological Bulletin. 42(1):1-5.
  • Ekin İ, Başhan M, Şeşen R (2011). Possible seasonal variations of the fatty acid composition from Melanopsis praemorsa (L., 1865) (Gastropoda: Prosobranchia) from the Southeast Anatolia, Turkey. Turkish Journal of Biology. 35(2):203-213.
  • APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
  • Demirci Ö, Çakmak F, Özkan Aİ (2020). Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. ADYU J SCI., 10(1):10-21.
  • Gurr E (1972). Biological Staining Methods. Kent Printers. 143. Tonbridge.
  • Lajtner J, Erben R, Klobucar GIV (1996). Histopathological Effects of Phenol on the Digestive Gland of Amphimelania holandri Fér. (Gastropoda, Prosobranchia). Bull Environ Contam Toxicol., 57(3):458–464.
  • Otitoloju AA, Ajikobi DO, Egonmwan RI (2009). Histopathology and Bioaccumulation of Heavy Metals (Cu & Pb) in the Giant land snail, Archachatina marginata (Swainson). Open Environ Poll Toxicol J., 2:79-88.
  • Otludil B, Bürçün-Karakaş S (2024). Histopathological Evaluation of the Curative Effects of EDTA on Lymnaea stagnalis Exposed to Subacute Cadmium. Bull. Environ. Cont. Toxicol., 112(84):1-7.
  • Arslan P, Yıldırım MZ, Günal AÇ (2023). The Effects of Fipronil on Glutathione and Histology of Freshwater Snails. KSU J. Agric Nat., 26(6):1436-1442.
  • Canesi L, Fabbri E (2015). Environmental effects of BPA: Focus on aquatic species. Dose Response, 13(3): 13(3):1-14.
  • Han G, Bu D, Kong R, Huang K, Liu C (2024). Toxic responses of environmental concentrations of bifenthrin in larval freshwater snail Bellamya aeruginosa. Chemosphere, 355:141863.
  • Vinaykamal DD (2023). Evaluation of Imidacloprid-induced toxicity and lipid peroxidation in the freshwater bivalve, Lamellidens marginalis. Int. J. Aquat. Biol., 11(2):124-130.
  • Gupta PK, Durve VS (1986). Histopathological changes induced by pentachlorophenol and sodium pentachlorophenate in the mantle of the freshwater snail Viviparus bengalensis (L). Acta Hydrochim. Hydrobiol., 14(4):433–437.
  • Tokat Ş, Otludil B (2025). Investigation of the Histopathological Effects of 5-Fluorouracil and Cisplatin Exposure on the Mantle Tissue of Melanopsis praemorsa Linnaeus, 1758 (Gastropoda: Prosobranchia). NaSTech, 4(1):387-395.
  • Marigómez I, Soto M, Cancio I, Orbea A, Garmendia L, Cajaraville MP (2006). Cell and tissue biomarkers in mussel, and histopathology in hake and anchovy from Bay of Biscay after the Prestige oil spill (Monitoring Campaign 2003). Mar Pollut Bull., 53(5–7): 287–304.
  • Kure JT, Jørgensen ML, Bjerregaard P (2018). Glyphosate and glyphosate-based herbicides induce cytotoxicity and oxidative stress in the freshwater gastropod Lymnaea stagnalis. Aquatic Toxicology. 194:141-150.
  • Cajaraville MP, Diez G, Marigomez JA, Angulo E (1991). Consequences of keeping Mytilus in the laboratory as assessed by different cellular condition indices. Helgoland Marine Research. 45:445-464.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Patoloji
Bölüm Araştırma Makalesi
Yazarlar

Birgül Otludil 0000-0002-6752-498X

Proje Numarası DÜBAP- FEN.18.005
Gönderilme Tarihi 11 Ağustos 2025
Kabul Tarihi 18 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Otludil, B. (2025). Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758). Dicle Üniversitesi Veteriner Fakültesi Dergisi, 18(2), 124-129. https://doi.org/10.47027/duvetfd.1762232
AMA 1.Otludil B. Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758). Dicle Üniv Vet Fak Derg. 2025;18(2):124-129. doi:10.47027/duvetfd.1762232
Chicago Otludil, Birgül. 2025. “Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758)”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18 (2): 124-29. https://doi.org/10.47027/duvetfd.1762232.
EndNote Otludil B (01 Aralık 2025) Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758). Dicle Üniversitesi Veteriner Fakültesi Dergisi 18 2 124–129.
IEEE [1]B. Otludil, “Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758)”, Dicle Üniv Vet Fak Derg, c. 18, sy 2, ss. 124–129, Ara. 2025, doi: 10.47027/duvetfd.1762232.
ISNAD Otludil, Birgül. “Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758)”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 18/2 (01 Aralık 2025): 124-129. https://doi.org/10.47027/duvetfd.1762232.
JAMA 1.Otludil B. Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758). Dicle Üniv Vet Fak Derg. 2025;18:124–129.
MLA Otludil, Birgül. “Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758)”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, c. 18, sy 2, Aralık 2025, ss. 124-9, doi:10.47027/duvetfd.1762232.
Vancouver 1.Otludil B. Histopathological and Ultrastructural Effects of Glyphosate on the Mantle Tissue of Melanopsis praemorsa (Linnaeus, 1758). Dicle Üniv Vet Fak Derg [Internet]. 01 Aralık 2025;18(2):124-9. Erişim adresi: https://izlik.org/JA55BP99MP