In consequences of recent researches, new approaches had been presented for cancer and
biochemical mechanisms explaning every steps of cancer from formation to maturation. Cancer is
multistep and long term process at genotypical and phenotypical level.
The formation and maturation of cancer are tried to explain in molecular level by biochemical
mechanisms responsible from cell seperation and development molecules stimulating cell development,
proteins controlling and arranging development genes and mechanisms responsible to limit development
just in time.İn the future, the new and more special treatment methods are necessary instead of classical
cancer treatments owing to new knowledgements obtained on the cell cycle and cancer field.
1- Futreal PA. Kasprzyk A. Birney E.
Mullikin JC. Wooster R. Stratton M.
(2001). Cancer and genomics. Nature
6822: 850-2
2-Fearnhead HO. (2004). Getting back on
track, or what to do when apoptosis is
de-railed: recoupling oncogenes to the
apoptotic machinery. Cancer Biol Ther.
3(1):21-8.
3-Williams GM. (2001). Mechanisms of
chemical carcinogenesis and
application to human cancer risk
assessment. Toxicology; 14:166 (1-
2):3-10.
4-Williams GM. (1979). Review of in vitro
test systems using DNA damage and
repair for screening of chemical
carcinogens. J. Assoc. Official Anal.
Chemists 62: 857–63.
5-Williams GM. (1985). Genotoxic and
epigenetic carcinogens. In: Homburger
F, ed. Safety Evaluation and
Regulation of Chemicals 2. Impact of
Regulations-Improvement of Methods.
Basel: Karger. 251–6.
6-Williams GM. (1987). DNA reactive and
epigenetic carcinogens. In: Barrett JC,
ed. Mechanisms of Environmental
Carcinogenesis, Vol 1: Role of Genetic
and Epigenetic Changes. Boca Raton,
FL: CRC Press, Inc. 113–27.
7-Williams GM. (1987). Definition of a
human cancer hazard. In:
Nongenotoxic Mechanisms in
Carcinogenesis. New York: Banbury
Report 25, Cold Spring Harbor
Laboratory. 367–80.
8-Williams GM. (1992). DNA reactive and
epigenetic carcinogens. Experimental
and Toxicologic Pathology. 44: 457–
64.
9-Yokuş B. Çakır DÜ. (202) İnvivo
Oksidatif DNA Hasarı Biyomarkerı; 8-
Hydroxy-2’-deoxyguanosine. Türkiye
Klinikleri Tıp Bilimleri Dergisi.5: 535-
43.
10- Sahu SC. (1990). Onkogenes,
onkogenesis and oxygen radicals.
Biomed Environ Sci 2: 183-201.
11- Heynick L.N. Johnston S.A. Mason
P.A. (2003). Radio Frequency
Electromagnetic Fields: Cancer,
Mutagenesis, and Genotoxicity.
Bioelectromagnetics S6: 74-100.
12- Yokuş B. Mete N. (2003). Oksidatif
DNA hasarı. Klinik Laboratuar
Araştırma Dergisi. 7(2); 51-64
13- Jajte J. Zmyslony M. Palus J.
Dziubaltowska E. Rajkowska E.
(2001). Protective effect of melatonin
against in vitro iron ions and 7 mT 50
Hz magnetic field-induced DNA
damage in rat lymphocytes. Mutat Res.
483(1-2):57-64.
14- Ivancsits S. Diem E. Jahn O. Rudiger
HW. (2003).Intermittent extremely low
frequency electromagnetic fields cause
DNA damage in a dose-dependent
way. Int Arch Occup Environ Health.
76(6):431-6.
15- Yokuş B. Çakır D.Ü, Akdağ.Z,
Mete.N, Sert C. (2005). Oxidative
DNA Damage in Rats Exposed to
Extremely Low Frequency Electro
Magnetic Fields. Free Radical
Research. 39(3): 317-323.
16- Yokus B, Akdag M.Z. Dasdag S. Cakir
D.U, Kizil M.(2008). Extremely Low
Frequency Electromagnetıc Fıelds
Cause Oxıdatıve DNA Damage in
Rats. International Journal of Radiation
Biology, 8 (10), 789-795.
17- Halliwell B, Aruoma OI. (1991). DNA
damage by oxygen-derived species; İts
mechanism and measurement in
mammalian systems. FEBS letters 281:
9-19.
18- Deshpande SS, Irani K. (2002).
Oxidant signalling in carcinogenesis: a
commentary. Hum Exp Toxicol 2: 63-
4.
19- Williams GM, Jeffrey A. (2000).
Oxidative DNA damage: endogenous
and chemically induced. Reg.
Pharmacol. Toxicol 32: 283–92.
20- Devereux TR, Risinger JI, Barrett
JC. (1999) Mutations and altered
expression of the human cancer
genes: What they tell us about causes. IARC Scientific Publications
146: 19-42.
21- Berenblum I: Frontiers of Biology.
(1974) In: Carcinogenesis as a
Biological Problem. Amsterdam:
North-Holland Pub. Co. New York:
212-24
22- Elenbaas L, Spirio F, Koerner MD,
Fleming DB, Zimonjic JL, Donaher
NC, Popescu WC. (2001). Human
breast cancer cells generated by
onkogenic transformation of primary
mammary epithelial cells. Genes Dev
15: 50–65.
23- Sherr J. (1996). Cancer cell cycle.
Science 274: 1672–7.
24- Weinstein M. Begemann P. Zhou EK.
Han A. Sgambato Y. Doki N. Arber M.
Ciaparrone H. Yamatoto H. (1997).
Disorders in cell circuitry associated
with multistage carcinogenesis:
exploitable targets for cancer
prevention and therapy. Clin. Cancer
Res; 3: 2696–702.
25- Bos JL. van Kreijl CF. (1992). In:
Vainio H, Magee PN, McGregor DB,
McMichael AJ. Eds. Genes and Gene
Products that Regulate Proliferation
and Differentiation: Critical Targets in
Carcinogenesis. Mechanisms of
Carcinogenesis in Risk Identification.
Lyon: International Agency for
Research of Cancer. 57–65.
26- Vogelstein A. Kinzler KW. (1993).
The multistep nature of cancer. Trends
Genet 9: 138–41.
27- Hussein SP, Harris CC. (1998).
Molecular epidemiology of human
cancer. Recent Results Cancer Res
154: 22–36.
28- Weinberg RA. (1995). The
retinoblastoma protein and cell cycle
control. Cell 81: 323–30.
29- Nowell P. (1976). The clonal evolution
of tümör cell populations. Science
194: 23–28.
30- Butterworth BE. Popp JA. Conolly RB.
Goldsworthy TL. Chemically induced
cell proliferation in carcinogenesis. In:
Vainio H, Magee PN, McGregor DB,
McMichael AJ, eds. Mechanisms of
Carcinogenesis in Risk Identification.
Lyon: International Agency for
Research of Cancer. 1992: 279–305.
31- Foulds L. Neoplastic Development 1.
(1969). New York: Academic Pres,
122-34
32- Corn PG., El-Deiry WS. (2002).
Derangement of growth and
differentiation control in onkogenesis.
Bioessays 1: 83-90.
33- Pucci B, Giordano A. (1999). Cell
cycle and cancer. Clin Ter. 2:135-41.
34- Ho A. Dowdy SF. (2002) Regulation of
G1 cell-cycle progression by onkogenes
and tumor suppressor genes. Current
Opinion in Genetics & Development 1:
47-52
35- Onat T. Emerk K. Sözmen EY. (2002).
İnsan Biyokimyası. Ankara: Palme
yayıncılık 569-75.
36- Pediconi N. Ianari A. Costanzo A.
Belloni L. Gallo R. et.al. (2003).
Differential regulation of E2F1
apoptotic target genes in response to
DNA damage. Nat Cell Biol. 6:552-8.
37- Scriver CR. Beaudet AL, Sly WS.,
Valle D. (2001). The Metabolic &
Molecular Bases of Inherited Disease.
McGraw-Hill; 613-74.
38- Kopnin BP. (2000). Targets of
onkogenes and tümör suppressors: key
for understanding basic mechanisms of
carcinogenesis. Biochemistry (Mosc)
1: 2-27.
39- Heuvel van den. Harlow E. (1993).
Distinct roles for cyclin-dependent
kinases in cell cycle control.
Science262: 2050–4.
40- Weinberg RA. (1995). The
retinoblastoma protein and cell cycle
control. Cell 81: 323–30.
41- Brown VD. Phillips RA. Gallie BL.
(1999). Cumulative effect of
phosphorylation of pRB on regulation
of E2F activity. Mol Cell Biol
19:3246–56.
42- Cotran R. Kumar V. Collins T. (1998).
Robins Pathologic Basis of Disease. In:
Cellular Pathology I: Cell Injury and
Cell Death. Cellular Pathology, II:
Adaptations, Intracellular
Accumulations, and Cell Aging. Philadelphia: WB Saunders Co. 238-
85.
43- Ohtsubo M. Theodoras A. Schumacher
J. Roberts J. Pagano M. (1995). Human
cyclin E, a nuclear protein essential for
the G1-to-S phase transition. Mol Cell
Biol 15: 2612–24.
44- Abbas AK. Lichtman AH. (2003).
Cellular and Molecular Immunology;
5th edition Philadelphia: Saunders Co.
243-74.
45- Smith MR. Matthews NT. Jones KA.
Kung HF. (1993). Biological actions of
onkogenes. Pharmacol Ther. 2: 211-36.
46- Labazi M, Phillips AC. (2003).
Oncogenes as regulators of apoptosis.
Essays Biochem. 39: 89-104.
47- Liu D. Wang LH. (1994). Onkogenes,
Protein Tyrosine Kinases, and Signal
Transduction. J Biomed Sci. 2: 65-82.
48- Loeb K.R. Loeb LA. (2000).
Signigicance of multiple mutations in
cancer. Carcinogenesis 21: 379–85.
50- Seemayer TA, Cavenee WK. (1989).
Molecular mechanisms of onkogenesis.
Lab Invest. 5: 585-99.
51- Almasan A. Yin Y. Kelly R. Lee E.
Bradley A., Li W. Bertino J. Wahl G.
(1995). Deficiency of retinoblastoma
protein leads to inappropriate S-phase
entry, activation of E2F-responsive
genes, and apoptosis. Proc Natl Acad
Sci USA 92: 5436–40.
52- Hughes RM. (2004). Strategies for
cancer gene therapy. J Surg Oncol.
85(1):28-35.
Son yıllarda yapılan çalışmalar kanserin oluşumu ve gelişimi ile ilgili biyokimyasal ve moleküler düzeyde
yeni katkılar sağlamıştır. Kanser çok basamaklı ve uzun süreli genotipik ve fenotipik düzeyde bir süreçtir.
Günümüzde hücre bölünme ve büyümesinden sorumlu biyokimyasal mekanizmalar, hücre büyümesini
uyaran moleküller, büyüme mekanizmasını kontrol eden proteinler, gerektiği zamanda büyümenin
sınırlandırılmasından sorumlu olan genler ve mekanizmalar ile kanser oluşumu ve gelişimi, moleküler
düzeyde açıklanmaya çalışılmaktadır. Önümüzdeki yıllarda, klasik kanser tedavileri yerine hücre siklusu
ve kanser alanında elde edilen yeni bilgilerin ışığında, yeni ve daha özel tedavi yöntemleri
uygulanacaktır.
1- Futreal PA. Kasprzyk A. Birney E.
Mullikin JC. Wooster R. Stratton M.
(2001). Cancer and genomics. Nature
6822: 850-2
2-Fearnhead HO. (2004). Getting back on
track, or what to do when apoptosis is
de-railed: recoupling oncogenes to the
apoptotic machinery. Cancer Biol Ther.
3(1):21-8.
3-Williams GM. (2001). Mechanisms of
chemical carcinogenesis and
application to human cancer risk
assessment. Toxicology; 14:166 (1-
2):3-10.
4-Williams GM. (1979). Review of in vitro
test systems using DNA damage and
repair for screening of chemical
carcinogens. J. Assoc. Official Anal.
Chemists 62: 857–63.
5-Williams GM. (1985). Genotoxic and
epigenetic carcinogens. In: Homburger
F, ed. Safety Evaluation and
Regulation of Chemicals 2. Impact of
Regulations-Improvement of Methods.
Basel: Karger. 251–6.
6-Williams GM. (1987). DNA reactive and
epigenetic carcinogens. In: Barrett JC,
ed. Mechanisms of Environmental
Carcinogenesis, Vol 1: Role of Genetic
and Epigenetic Changes. Boca Raton,
FL: CRC Press, Inc. 113–27.
7-Williams GM. (1987). Definition of a
human cancer hazard. In:
Nongenotoxic Mechanisms in
Carcinogenesis. New York: Banbury
Report 25, Cold Spring Harbor
Laboratory. 367–80.
8-Williams GM. (1992). DNA reactive and
epigenetic carcinogens. Experimental
and Toxicologic Pathology. 44: 457–
64.
9-Yokuş B. Çakır DÜ. (202) İnvivo
Oksidatif DNA Hasarı Biyomarkerı; 8-
Hydroxy-2’-deoxyguanosine. Türkiye
Klinikleri Tıp Bilimleri Dergisi.5: 535-
43.
10- Sahu SC. (1990). Onkogenes,
onkogenesis and oxygen radicals.
Biomed Environ Sci 2: 183-201.
11- Heynick L.N. Johnston S.A. Mason
P.A. (2003). Radio Frequency
Electromagnetic Fields: Cancer,
Mutagenesis, and Genotoxicity.
Bioelectromagnetics S6: 74-100.
12- Yokuş B. Mete N. (2003). Oksidatif
DNA hasarı. Klinik Laboratuar
Araştırma Dergisi. 7(2); 51-64
13- Jajte J. Zmyslony M. Palus J.
Dziubaltowska E. Rajkowska E.
(2001). Protective effect of melatonin
against in vitro iron ions and 7 mT 50
Hz magnetic field-induced DNA
damage in rat lymphocytes. Mutat Res.
483(1-2):57-64.
14- Ivancsits S. Diem E. Jahn O. Rudiger
HW. (2003).Intermittent extremely low
frequency electromagnetic fields cause
DNA damage in a dose-dependent
way. Int Arch Occup Environ Health.
76(6):431-6.
15- Yokuş B. Çakır D.Ü, Akdağ.Z,
Mete.N, Sert C. (2005). Oxidative
DNA Damage in Rats Exposed to
Extremely Low Frequency Electro
Magnetic Fields. Free Radical
Research. 39(3): 317-323.
16- Yokus B, Akdag M.Z. Dasdag S. Cakir
D.U, Kizil M.(2008). Extremely Low
Frequency Electromagnetıc Fıelds
Cause Oxıdatıve DNA Damage in
Rats. International Journal of Radiation
Biology, 8 (10), 789-795.
17- Halliwell B, Aruoma OI. (1991). DNA
damage by oxygen-derived species; İts
mechanism and measurement in
mammalian systems. FEBS letters 281:
9-19.
18- Deshpande SS, Irani K. (2002).
Oxidant signalling in carcinogenesis: a
commentary. Hum Exp Toxicol 2: 63-
4.
19- Williams GM, Jeffrey A. (2000).
Oxidative DNA damage: endogenous
and chemically induced. Reg.
Pharmacol. Toxicol 32: 283–92.
20- Devereux TR, Risinger JI, Barrett
JC. (1999) Mutations and altered
expression of the human cancer
genes: What they tell us about causes. IARC Scientific Publications
146: 19-42.
21- Berenblum I: Frontiers of Biology.
(1974) In: Carcinogenesis as a
Biological Problem. Amsterdam:
North-Holland Pub. Co. New York:
212-24
22- Elenbaas L, Spirio F, Koerner MD,
Fleming DB, Zimonjic JL, Donaher
NC, Popescu WC. (2001). Human
breast cancer cells generated by
onkogenic transformation of primary
mammary epithelial cells. Genes Dev
15: 50–65.
23- Sherr J. (1996). Cancer cell cycle.
Science 274: 1672–7.
24- Weinstein M. Begemann P. Zhou EK.
Han A. Sgambato Y. Doki N. Arber M.
Ciaparrone H. Yamatoto H. (1997).
Disorders in cell circuitry associated
with multistage carcinogenesis:
exploitable targets for cancer
prevention and therapy. Clin. Cancer
Res; 3: 2696–702.
25- Bos JL. van Kreijl CF. (1992). In:
Vainio H, Magee PN, McGregor DB,
McMichael AJ. Eds. Genes and Gene
Products that Regulate Proliferation
and Differentiation: Critical Targets in
Carcinogenesis. Mechanisms of
Carcinogenesis in Risk Identification.
Lyon: International Agency for
Research of Cancer. 57–65.
26- Vogelstein A. Kinzler KW. (1993).
The multistep nature of cancer. Trends
Genet 9: 138–41.
27- Hussein SP, Harris CC. (1998).
Molecular epidemiology of human
cancer. Recent Results Cancer Res
154: 22–36.
28- Weinberg RA. (1995). The
retinoblastoma protein and cell cycle
control. Cell 81: 323–30.
29- Nowell P. (1976). The clonal evolution
of tümör cell populations. Science
194: 23–28.
30- Butterworth BE. Popp JA. Conolly RB.
Goldsworthy TL. Chemically induced
cell proliferation in carcinogenesis. In:
Vainio H, Magee PN, McGregor DB,
McMichael AJ, eds. Mechanisms of
Carcinogenesis in Risk Identification.
Lyon: International Agency for
Research of Cancer. 1992: 279–305.
31- Foulds L. Neoplastic Development 1.
(1969). New York: Academic Pres,
122-34
32- Corn PG., El-Deiry WS. (2002).
Derangement of growth and
differentiation control in onkogenesis.
Bioessays 1: 83-90.
33- Pucci B, Giordano A. (1999). Cell
cycle and cancer. Clin Ter. 2:135-41.
34- Ho A. Dowdy SF. (2002) Regulation of
G1 cell-cycle progression by onkogenes
and tumor suppressor genes. Current
Opinion in Genetics & Development 1:
47-52
35- Onat T. Emerk K. Sözmen EY. (2002).
İnsan Biyokimyası. Ankara: Palme
yayıncılık 569-75.
36- Pediconi N. Ianari A. Costanzo A.
Belloni L. Gallo R. et.al. (2003).
Differential regulation of E2F1
apoptotic target genes in response to
DNA damage. Nat Cell Biol. 6:552-8.
37- Scriver CR. Beaudet AL, Sly WS.,
Valle D. (2001). The Metabolic &
Molecular Bases of Inherited Disease.
McGraw-Hill; 613-74.
38- Kopnin BP. (2000). Targets of
onkogenes and tümör suppressors: key
for understanding basic mechanisms of
carcinogenesis. Biochemistry (Mosc)
1: 2-27.
39- Heuvel van den. Harlow E. (1993).
Distinct roles for cyclin-dependent
kinases in cell cycle control.
Science262: 2050–4.
40- Weinberg RA. (1995). The
retinoblastoma protein and cell cycle
control. Cell 81: 323–30.
41- Brown VD. Phillips RA. Gallie BL.
(1999). Cumulative effect of
phosphorylation of pRB on regulation
of E2F activity. Mol Cell Biol
19:3246–56.
42- Cotran R. Kumar V. Collins T. (1998).
Robins Pathologic Basis of Disease. In:
Cellular Pathology I: Cell Injury and
Cell Death. Cellular Pathology, II:
Adaptations, Intracellular
Accumulations, and Cell Aging. Philadelphia: WB Saunders Co. 238-
85.
43- Ohtsubo M. Theodoras A. Schumacher
J. Roberts J. Pagano M. (1995). Human
cyclin E, a nuclear protein essential for
the G1-to-S phase transition. Mol Cell
Biol 15: 2612–24.
44- Abbas AK. Lichtman AH. (2003).
Cellular and Molecular Immunology;
5th edition Philadelphia: Saunders Co.
243-74.
45- Smith MR. Matthews NT. Jones KA.
Kung HF. (1993). Biological actions of
onkogenes. Pharmacol Ther. 2: 211-36.
46- Labazi M, Phillips AC. (2003).
Oncogenes as regulators of apoptosis.
Essays Biochem. 39: 89-104.
47- Liu D. Wang LH. (1994). Onkogenes,
Protein Tyrosine Kinases, and Signal
Transduction. J Biomed Sci. 2: 65-82.
48- Loeb K.R. Loeb LA. (2000).
Signigicance of multiple mutations in
cancer. Carcinogenesis 21: 379–85.
50- Seemayer TA, Cavenee WK. (1989).
Molecular mechanisms of onkogenesis.
Lab Invest. 5: 585-99.
51- Almasan A. Yin Y. Kelly R. Lee E.
Bradley A., Li W. Bertino J. Wahl G.
(1995). Deficiency of retinoblastoma
protein leads to inappropriate S-phase
entry, activation of E2F-responsive
genes, and apoptosis. Proc Natl Acad
Sci USA 92: 5436–40.
52- Hughes RM. (2004). Strategies for
cancer gene therapy. J Surg Oncol.
85(1):28-35.