Derleme
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 7 Sayı: 2, 100 - 116, 27.09.2018

Öz

Kaynakça

  • [1]. Jerz, J., 2010, “Selection of Engineering Materials and Advanced Technologies For Specific İndustrial Applications”, Journal: Materials Science and Technology, ISSN: 1335-9053, 1-12, Slovakia.
  • [2]. Jerz, J., (2009), “Research, Development and Technology Transfer (R & D & TT) in the Field of Engineering Materials and Related Technologies”, Advances in Technology, Education and Development, Wim Kouwenhoven (Ed.), ISBN: 978-953-307-011-7, INTECH.
  • [3]. Gibson, L.J., and Ashby, M.F., (1997), “CellularSolids – Structure and Properties”, 2nd ed., Cambridge University Press, Cambridge.
  • [4]. Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L.J., Hutchinson, J. W. and Wadley, H. N. G., (2000)“Metal Foams – A Design Guide”, Butterworth-Heinemann, Oxford, UK.
  • [5]. Miyoshi, T., Itoh, M., Akiyama, S. and Kitahara, A., (2000),Adv. Eng. Materials 2, pp. 179-183.
  • [6]. Kádár, Cs., Kenesei, P., Lendvai, J. and Rajkovits, Zs., (2005),“Energy Absorptıon Propertıes Of Metal Foams”, VI. évfolyam 1.szám 2005. Január Volume 6 - No 1 – January.
  • [7]. Ozan, S., ve Katı, N., (2011), 6th International Advanced Technologies Symposium (IATS’11), Elazığ, Turkey
  • [8]. Başpınar, M, S., Yurtcu, Ş., (2011), “Metalik Köpük Malzemelerin Mekanik Özelliklerini Belirlemede Kullanılan Matematiksel Modeller” Makine Teknolojileri Elektronik Dergisi, (8) 69-78.
  • [9]. Yavuz, İ., Başpınar, S., M., Bayrakçeken, H., (2009), “Metalik Köpük Malzemelerin Taşıtlarda Kullanımı” Taşıt Teknolojileri Elektronik Dergisi (3) 43-51.
  • [10]. Park, C., Nutt, S.R., (2001), “Anisotropy and strain localization in steel foam”, Materials Science and Engineering A299 68 – 74.
  • [11]. Avarisli, O., Uğuz, A., (2003), “Metalik Köpük Malzemelerin Otomotiv Endüstrisinde Kullanılması” VIII.Otomotiv ve Yan Sanayii Sempozyumu.-5.
  • [12]. Yi, Fi., Haiwu Z., Zhengang Z., Fangqiou Z., (2002), "The Microstructure and Electrical Conductivity of Aluminum Alloy Foams", Material Chemistry and Physics, 78, 196–201.
  • [13]. Türker, M., (2009), “Toz Metalurjisi Yöntemi ile Alüminyum Köpük Üretimi”, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük Üniversitesi, Karabük, 1-6.
  • [14]. Smith B.H., Szyniszewski S., Hajjar J.F., Schafer B.W., Arwade S.R., (2012), “Steel foam for structures: A review of applications, manufacturing and material properties”, Journal of Constructional Steel Research 71, 1–10.
  • [15]. Kremer, K., Liszkiewicz, A., and Adkins, J., (2004), Development of steel foam materials and structures. US DOE and AISI final report DE-FC36-97ID13554 performed by Fraunhofer USA — Delaware Center for Manufacturing and Advanced Materials, Newark, DE.
  • [16]. Banhart, J., (2000), “Manufacturing Routes for Metalic Foams, JOM, 23-25.
  • [17]. Muriel, J., Sanchez, R. A., Barona, M. W., and Sanchez, S. H., (2009), “Steel and gray iron foam by powder metallurgical synthesis”, Supl Rev Latinoam Metal Mater, S1 (4):1435–40.
  • [18]. Park, C., and Nutt, SR., (2000), “PM synthesis and properties of steel foams”, Mater Sci Eng A, A288:111–8.
  • [19]. Nishiyabu, K., Matsuzaki, S., and Tanaka, S., (2005), “Effectiveness of micro porous metal metal components with functionally graded structures”, MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), 21–23 September 2005. p. 325–8. Kyoto, Japan.
  • [20]. Rabiei, A., and Vendra, LJ., (2009) “A comparison of composite metal foam's properties and other comparable metal foams”, Mater Lett ,63:533–6.
  • [21]. Friedl, O., Motz, C., Peterlik, H., Puchegger, S., Reger, N., and Pippan, R., (2007), “Experimental inves-tigation of mechanical properties of metallic hollow sphere structures”, Metall Mater Trans B, 39(1):135–46.
  • [22]. Brown, J.A., Vendra, L.J., and Rabiei, A., (2010), “Bending properties of Al–steel and steel–steel composite metal foams”, Metall Mater Trans A.
  • [23]. Neville, B., P., and Rabiei, A., (2008), “Composite metal foams processed through powder metallurgy”, Mater Des, 29:388–96.
  • [24]. Daxner, T., Tomas, R.,W., and Bitsche, R., D. (2007), “Mechanics of semi-expanded hollow sphere foams”, MetFoam 2007: Proceedings of the 5th International Conference on Porous Metals and Metallic Foams. 5–7 September 2007, Montreal, Canada;. p. 169–72.
  • [25]. Hyun, S., K, Park, J., S, Tane, M., and Nakajima, H.,(2005), “Fabrication of lotus-type porous metals by continuous zone melting and continuous casting techniques”, MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), Kyoto, Japan.
  • [26]. Ikeda, T., Aoki, T., and Nakajima, H.,(2007), “Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property”, Metall Mater Trans A, 36A:77–86.
  • [27]. Verdooren, A., Chan, H. M., Grenestedt, J. L., Harmer, M. P., and Caram, H. S.,(2005), “Fabrication of low density ferrous metallic foams by reduction of ceramic foam precursors”, J Mater Sci, 40:4333–9.
  • [28]. Verdooren, A, Chan, H. M., Grenestedt, J. L., Harmer, M. P., Caram, H. S.,(2005), “Fabrication of low density ferrous metallic foams by reduction of chemically bonded ceramic foams”, J Am Ceram Soc, 89(10):3101–6.
  • [29]. Adler, J., Standke, G., and Stephani, G.,(2004), “Sintered open-celled metal foams made by replica-tion method - manufacturing and properties on example of 316L stainless steel foams” Proceedings of the Symposium on Cellular Metals and Polymers (CMaP). Deutsche Forschungsgemeinschaft (DFG), Fürth, Germany, p. 89–92.
  • [30]. Angel, S., Bleck, W., and Scholz, P. F., (2004), “Slip Reaction Foam Sintering (SRFS) — Process: Production Parameters Characterisation”, Proceedings of the Symposium on Cellular Metals and Polymers (CMaP). Deutsche Forschungsgemeinschaft (DFG), Fürth, Germany.
  • [31]. Weise, J., Beltrame, D. S. G., and Salk, N.,(2010), “Production and properties of syntactic steel and iron foams with micro glass bubbles”., (unknown).
  • [32]. Tuchinsky, L.,(2005), “Novel fabrication technology for metal foams”, J Adv Mater ,37 (3):60–5.
  • [33]. Lee, B. K., Jeon, I., Kang, K. J.,(2007), “Compressive characteristics of WBK truss cores. Met-Foam”, Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, Montreal, Canada, p. 177–80.
  • [34]. Kostornov, A. G., Kirichenko, O. V., Brodnikovskii, N. P., Guslienko, Y.A., and Klimenko, V. N.,(2008), “High-porous materials made from alloy steel fibers: production, structure, and mechanical properties”, Powder Metall Metal Ceram, 47(5–6):295–8.
  • [35]. Güven, Ş., Y., (2011), “Toz Metalurjisi ve Köpükler”, SDU Journal of Technical Sciences, (2), 22-28.
  • [36]. Banhart, J., (2001), “Manufacture, Characterisation and Application of Cellular Metals and Metal Foams”, Progress in Materials Science, 46, 559 -632.
  • [37]. Banhart, J., (2003), “Aluminium Foams for Lighter Vehicles”, International Journal of Vehicle Design, 1-19.
  • [38]. Yavuz, İ., (2010), “Metalik Köpük Malzemeler ve Uygulama Alanları”, Taşıt Teknolojileri Elektronik Dergisi (TATED), Cilt:2, No:1, 49-58.
  • [39]. Yu, C. J., Eifert, H., Banhart, J., ve Baumeister, J., (1998), “Metal Foams”, Advanced Materials&Processes, 45-47.
  • [40]. Sertkaya, A.A.2008. “The Production of Aluminium Foam As Heat Exchanger & Heat Transfer Modelling,” Ph.D. Thesis, Department of Mechanical Engineering, Graduate School of Natural and Applied Sciences, Selçuk University, Konya.
  • [41]. Lefebvre, L., Banhart, J., Dunand, D., (2008), “Porous metals and metallic foams: current status and recent developments”, Adv Eng Mater, 10:775–87.
  • [42]. Cardoso, E., Oliveira, B., (2010), “Study of the use of metallic foam in a vehicle for an energy economy racing circuit”, Materialwiss Werkstofftech, 41:257–64.
  • [43]. Uzun, A., Islak, S., (2009), “Metalik Köpüklerin Uygulama Alanları”, Paslanmaz Demir Çelik ve Sac İşleme Teknolojileri Dergisi, 58-61.
  • [44]. Schwingel, H. D.,- Seeliger, W., Vecchionacci, C., Alwes, D., Dittrich, J., (2007), “Aluminium foam sandwich structures for space applications”, Acta Astronautica 61, 326 – 330.
  • [45]. Neugebauer, R., Hipke, T., Hohlfeld, J., and Thümmler R., (2004), “Metal foam as a combination of lightweight engineering and damping”, In: Singer RF, Koerner C, Alstaedt V, Muenstedt H, editors. Cellular metals and polymers, 2005. p. 13–8.
  • [46]. Neugebauer, R., Lies, C., Hohlfeld, J., and Hipke, T., (2007), “Adhesion in sandwiches with aluminum foam core”, Prod. Eng. Res. Devel., 1:271-278.
  • [47]. Sertkaya, A. A. (2013), “Metal Köpük Isı Değiştiriciler,” Mühendis ve Makina, cilt 54, sayı 646, s. 22-26.
  • [48]. Fathy, A., Ahmed, A., and Morgan, H.,(2007), “Characterization and optimization of steel foam produced by slip casting process”, MetFoam 2007: Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, Montreal, Canada; 2007. p. 161–4.
  • [49]. Fazekas, A., Dendievel, R., Salvo, L., and Brechet, Y.,(2002), “Effect of microstructural topology upon the stiffness and strength of 2D cellular structures”, Int J Mech Sci, 44: 2047–66.
  • [50]. Andrews, E. W., Gioux, G., Onck, P., and Gibson, L. J.,(2001), “Size effects in ductile cellular solids. Part II: experimental results”, Int J Mech Sci, 43:701–13.
  • [51]. Kujime, T., Hyun, S. K, and Nakajima, H., (2005), “Mechanical properties of lotus-type porous carbon steel by continuous zone melting”, MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), Kyoto, Japan, p. 525–8.
  • [52]. Kostornov, A. G., Kirichenko, O. V., Brodnikovskii, N. P., Guslienko, Y.A., and Klimenko, V. N.,(2008), “High-porous materials made from alloy steel fibers: production, structure, and mechanical properties”, Powder Metall Metal Ceram, 47(5–6):295–8.
  • [53]. Lim, T. J., Smith, B., and McDowell, D. L., (2002), “Behavior of a random hollow sphere metal foam”, Acta Mater, 50:2867–79.
  • [54]. Khayargoli, P., Loya, V., Lefebvre, L. P., and Medraj, M.,(2004), “The impact of microstructure on the permeability of metal foams”, CSME 2004 Forum, p. 220–8.
  • [55]. Tang, H. P., Zhu, J. L., Wang, J. Y., Ge, Y., and Li, C., (2007), “Sound absorption characters of metal fibrous porous material”, MetFoam 2007: Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, Montreal, Canada, p. 181–4.
  • [56]. Zhao, C. Y., Lu, T. J., Hodson, H. P., and Jackson, J. D., (2004), “The temperature dependence of effective thermal conductivity of open-celled steel alloy foams”, Mater Sci Eng A, 267:123–31.
  • [57]. Chen, S., Marx, J., and Rabiei, A., (2016), “Experimen tal and computational studies on the thermal behavior and fire retardant properties of composite metal foams”, International Journal of Thermal Sciences 106, 70-79.
  • [58]. Jung, A., Pullen, A., Ad., and Proud, W., G., (2016), “Strain-rate effects in Ni/Al composite metal foams from quasi-static to low-velocity impact behaviour”, Composites: Part A (85), 1-11.
  • [59]. Alvandi-Tabrizi, Y., Whisler, D., A., Kim, H., and Rabiei A., (2015), “High strain rate behavior of composite metal foams”, Materials Science & Engineering A, 631, 248-257
  • [60]. Gökmen, U., ve Türker, M., (2012), “Al2O3 İlavesinin Alüminyum Ve Alumix 231 Esaslı Metalik Köpüğün Köpürme Özelliklerine Etkisi”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol 27, No 3, 651-658.

Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri

Yıl 2018, Cilt: 7 Sayı: 2, 100 - 116, 27.09.2018

Öz

Sanayideki gelişmelerle birlikte artan yeni tür
malzeme ihtiyacı yadsınamaz bir gerçek olarak karşımızda durmaktadır. Buna
paralel olarak mühendislik malzemelerinde aranan özellikler sürekli
değişmektedir. Özellikle son dönemde malzemelerin, hafif ve yüksek dayanıma sahip
olması aranan özelliklerin başında gelmektedir. Köpüren metaller ya da metalik
köpükler diye adlandırılan yeni nesil bu malzemeler, hafif ve yüksek dayanım
özelliklerinin yanı sıra çok iyi derecede mekanik, akustik, termal, elektriksel
ve kimyasal özelliklerinden dolayı, hem fonksiyonel hem de endüstriyel alanda
ihtiyaçları karşılamak için çok ciddi şekilde talep görmektedir. Bu çalışmada,
dünyada ve Türkiye’de metalik köpüklerle ilgili yapılan araştırmalar
incelenerek metalik köpük malzemelerin üretim yöntemleri, uygulama alanları ve
malzeme özelliklerine ait bilgiler verilmiştir. 

Kaynakça

  • [1]. Jerz, J., 2010, “Selection of Engineering Materials and Advanced Technologies For Specific İndustrial Applications”, Journal: Materials Science and Technology, ISSN: 1335-9053, 1-12, Slovakia.
  • [2]. Jerz, J., (2009), “Research, Development and Technology Transfer (R & D & TT) in the Field of Engineering Materials and Related Technologies”, Advances in Technology, Education and Development, Wim Kouwenhoven (Ed.), ISBN: 978-953-307-011-7, INTECH.
  • [3]. Gibson, L.J., and Ashby, M.F., (1997), “CellularSolids – Structure and Properties”, 2nd ed., Cambridge University Press, Cambridge.
  • [4]. Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L.J., Hutchinson, J. W. and Wadley, H. N. G., (2000)“Metal Foams – A Design Guide”, Butterworth-Heinemann, Oxford, UK.
  • [5]. Miyoshi, T., Itoh, M., Akiyama, S. and Kitahara, A., (2000),Adv. Eng. Materials 2, pp. 179-183.
  • [6]. Kádár, Cs., Kenesei, P., Lendvai, J. and Rajkovits, Zs., (2005),“Energy Absorptıon Propertıes Of Metal Foams”, VI. évfolyam 1.szám 2005. Január Volume 6 - No 1 – January.
  • [7]. Ozan, S., ve Katı, N., (2011), 6th International Advanced Technologies Symposium (IATS’11), Elazığ, Turkey
  • [8]. Başpınar, M, S., Yurtcu, Ş., (2011), “Metalik Köpük Malzemelerin Mekanik Özelliklerini Belirlemede Kullanılan Matematiksel Modeller” Makine Teknolojileri Elektronik Dergisi, (8) 69-78.
  • [9]. Yavuz, İ., Başpınar, S., M., Bayrakçeken, H., (2009), “Metalik Köpük Malzemelerin Taşıtlarda Kullanımı” Taşıt Teknolojileri Elektronik Dergisi (3) 43-51.
  • [10]. Park, C., Nutt, S.R., (2001), “Anisotropy and strain localization in steel foam”, Materials Science and Engineering A299 68 – 74.
  • [11]. Avarisli, O., Uğuz, A., (2003), “Metalik Köpük Malzemelerin Otomotiv Endüstrisinde Kullanılması” VIII.Otomotiv ve Yan Sanayii Sempozyumu.-5.
  • [12]. Yi, Fi., Haiwu Z., Zhengang Z., Fangqiou Z., (2002), "The Microstructure and Electrical Conductivity of Aluminum Alloy Foams", Material Chemistry and Physics, 78, 196–201.
  • [13]. Türker, M., (2009), “Toz Metalurjisi Yöntemi ile Alüminyum Köpük Üretimi”, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük Üniversitesi, Karabük, 1-6.
  • [14]. Smith B.H., Szyniszewski S., Hajjar J.F., Schafer B.W., Arwade S.R., (2012), “Steel foam for structures: A review of applications, manufacturing and material properties”, Journal of Constructional Steel Research 71, 1–10.
  • [15]. Kremer, K., Liszkiewicz, A., and Adkins, J., (2004), Development of steel foam materials and structures. US DOE and AISI final report DE-FC36-97ID13554 performed by Fraunhofer USA — Delaware Center for Manufacturing and Advanced Materials, Newark, DE.
  • [16]. Banhart, J., (2000), “Manufacturing Routes for Metalic Foams, JOM, 23-25.
  • [17]. Muriel, J., Sanchez, R. A., Barona, M. W., and Sanchez, S. H., (2009), “Steel and gray iron foam by powder metallurgical synthesis”, Supl Rev Latinoam Metal Mater, S1 (4):1435–40.
  • [18]. Park, C., and Nutt, SR., (2000), “PM synthesis and properties of steel foams”, Mater Sci Eng A, A288:111–8.
  • [19]. Nishiyabu, K., Matsuzaki, S., and Tanaka, S., (2005), “Effectiveness of micro porous metal metal components with functionally graded structures”, MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), 21–23 September 2005. p. 325–8. Kyoto, Japan.
  • [20]. Rabiei, A., and Vendra, LJ., (2009) “A comparison of composite metal foam's properties and other comparable metal foams”, Mater Lett ,63:533–6.
  • [21]. Friedl, O., Motz, C., Peterlik, H., Puchegger, S., Reger, N., and Pippan, R., (2007), “Experimental inves-tigation of mechanical properties of metallic hollow sphere structures”, Metall Mater Trans B, 39(1):135–46.
  • [22]. Brown, J.A., Vendra, L.J., and Rabiei, A., (2010), “Bending properties of Al–steel and steel–steel composite metal foams”, Metall Mater Trans A.
  • [23]. Neville, B., P., and Rabiei, A., (2008), “Composite metal foams processed through powder metallurgy”, Mater Des, 29:388–96.
  • [24]. Daxner, T., Tomas, R.,W., and Bitsche, R., D. (2007), “Mechanics of semi-expanded hollow sphere foams”, MetFoam 2007: Proceedings of the 5th International Conference on Porous Metals and Metallic Foams. 5–7 September 2007, Montreal, Canada;. p. 169–72.
  • [25]. Hyun, S., K, Park, J., S, Tane, M., and Nakajima, H.,(2005), “Fabrication of lotus-type porous metals by continuous zone melting and continuous casting techniques”, MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), Kyoto, Japan.
  • [26]. Ikeda, T., Aoki, T., and Nakajima, H.,(2007), “Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property”, Metall Mater Trans A, 36A:77–86.
  • [27]. Verdooren, A., Chan, H. M., Grenestedt, J. L., Harmer, M. P., and Caram, H. S.,(2005), “Fabrication of low density ferrous metallic foams by reduction of ceramic foam precursors”, J Mater Sci, 40:4333–9.
  • [28]. Verdooren, A, Chan, H. M., Grenestedt, J. L., Harmer, M. P., Caram, H. S.,(2005), “Fabrication of low density ferrous metallic foams by reduction of chemically bonded ceramic foams”, J Am Ceram Soc, 89(10):3101–6.
  • [29]. Adler, J., Standke, G., and Stephani, G.,(2004), “Sintered open-celled metal foams made by replica-tion method - manufacturing and properties on example of 316L stainless steel foams” Proceedings of the Symposium on Cellular Metals and Polymers (CMaP). Deutsche Forschungsgemeinschaft (DFG), Fürth, Germany, p. 89–92.
  • [30]. Angel, S., Bleck, W., and Scholz, P. F., (2004), “Slip Reaction Foam Sintering (SRFS) — Process: Production Parameters Characterisation”, Proceedings of the Symposium on Cellular Metals and Polymers (CMaP). Deutsche Forschungsgemeinschaft (DFG), Fürth, Germany.
  • [31]. Weise, J., Beltrame, D. S. G., and Salk, N.,(2010), “Production and properties of syntactic steel and iron foams with micro glass bubbles”., (unknown).
  • [32]. Tuchinsky, L.,(2005), “Novel fabrication technology for metal foams”, J Adv Mater ,37 (3):60–5.
  • [33]. Lee, B. K., Jeon, I., Kang, K. J.,(2007), “Compressive characteristics of WBK truss cores. Met-Foam”, Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, Montreal, Canada, p. 177–80.
  • [34]. Kostornov, A. G., Kirichenko, O. V., Brodnikovskii, N. P., Guslienko, Y.A., and Klimenko, V. N.,(2008), “High-porous materials made from alloy steel fibers: production, structure, and mechanical properties”, Powder Metall Metal Ceram, 47(5–6):295–8.
  • [35]. Güven, Ş., Y., (2011), “Toz Metalurjisi ve Köpükler”, SDU Journal of Technical Sciences, (2), 22-28.
  • [36]. Banhart, J., (2001), “Manufacture, Characterisation and Application of Cellular Metals and Metal Foams”, Progress in Materials Science, 46, 559 -632.
  • [37]. Banhart, J., (2003), “Aluminium Foams for Lighter Vehicles”, International Journal of Vehicle Design, 1-19.
  • [38]. Yavuz, İ., (2010), “Metalik Köpük Malzemeler ve Uygulama Alanları”, Taşıt Teknolojileri Elektronik Dergisi (TATED), Cilt:2, No:1, 49-58.
  • [39]. Yu, C. J., Eifert, H., Banhart, J., ve Baumeister, J., (1998), “Metal Foams”, Advanced Materials&Processes, 45-47.
  • [40]. Sertkaya, A.A.2008. “The Production of Aluminium Foam As Heat Exchanger & Heat Transfer Modelling,” Ph.D. Thesis, Department of Mechanical Engineering, Graduate School of Natural and Applied Sciences, Selçuk University, Konya.
  • [41]. Lefebvre, L., Banhart, J., Dunand, D., (2008), “Porous metals and metallic foams: current status and recent developments”, Adv Eng Mater, 10:775–87.
  • [42]. Cardoso, E., Oliveira, B., (2010), “Study of the use of metallic foam in a vehicle for an energy economy racing circuit”, Materialwiss Werkstofftech, 41:257–64.
  • [43]. Uzun, A., Islak, S., (2009), “Metalik Köpüklerin Uygulama Alanları”, Paslanmaz Demir Çelik ve Sac İşleme Teknolojileri Dergisi, 58-61.
  • [44]. Schwingel, H. D.,- Seeliger, W., Vecchionacci, C., Alwes, D., Dittrich, J., (2007), “Aluminium foam sandwich structures for space applications”, Acta Astronautica 61, 326 – 330.
  • [45]. Neugebauer, R., Hipke, T., Hohlfeld, J., and Thümmler R., (2004), “Metal foam as a combination of lightweight engineering and damping”, In: Singer RF, Koerner C, Alstaedt V, Muenstedt H, editors. Cellular metals and polymers, 2005. p. 13–8.
  • [46]. Neugebauer, R., Lies, C., Hohlfeld, J., and Hipke, T., (2007), “Adhesion in sandwiches with aluminum foam core”, Prod. Eng. Res. Devel., 1:271-278.
  • [47]. Sertkaya, A. A. (2013), “Metal Köpük Isı Değiştiriciler,” Mühendis ve Makina, cilt 54, sayı 646, s. 22-26.
  • [48]. Fathy, A., Ahmed, A., and Morgan, H.,(2007), “Characterization and optimization of steel foam produced by slip casting process”, MetFoam 2007: Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, Montreal, Canada; 2007. p. 161–4.
  • [49]. Fazekas, A., Dendievel, R., Salvo, L., and Brechet, Y.,(2002), “Effect of microstructural topology upon the stiffness and strength of 2D cellular structures”, Int J Mech Sci, 44: 2047–66.
  • [50]. Andrews, E. W., Gioux, G., Onck, P., and Gibson, L. J.,(2001), “Size effects in ductile cellular solids. Part II: experimental results”, Int J Mech Sci, 43:701–13.
  • [51]. Kujime, T., Hyun, S. K, and Nakajima, H., (2005), “Mechanical properties of lotus-type porous carbon steel by continuous zone melting”, MetFoam 2005: 4th International Conference on Porous Metals and Metal Foaming Technology. Japan Institute of Metals (JIMIC-4), Kyoto, Japan, p. 525–8.
  • [52]. Kostornov, A. G., Kirichenko, O. V., Brodnikovskii, N. P., Guslienko, Y.A., and Klimenko, V. N.,(2008), “High-porous materials made from alloy steel fibers: production, structure, and mechanical properties”, Powder Metall Metal Ceram, 47(5–6):295–8.
  • [53]. Lim, T. J., Smith, B., and McDowell, D. L., (2002), “Behavior of a random hollow sphere metal foam”, Acta Mater, 50:2867–79.
  • [54]. Khayargoli, P., Loya, V., Lefebvre, L. P., and Medraj, M.,(2004), “The impact of microstructure on the permeability of metal foams”, CSME 2004 Forum, p. 220–8.
  • [55]. Tang, H. P., Zhu, J. L., Wang, J. Y., Ge, Y., and Li, C., (2007), “Sound absorption characters of metal fibrous porous material”, MetFoam 2007: Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, Montreal, Canada, p. 181–4.
  • [56]. Zhao, C. Y., Lu, T. J., Hodson, H. P., and Jackson, J. D., (2004), “The temperature dependence of effective thermal conductivity of open-celled steel alloy foams”, Mater Sci Eng A, 267:123–31.
  • [57]. Chen, S., Marx, J., and Rabiei, A., (2016), “Experimen tal and computational studies on the thermal behavior and fire retardant properties of composite metal foams”, International Journal of Thermal Sciences 106, 70-79.
  • [58]. Jung, A., Pullen, A., Ad., and Proud, W., G., (2016), “Strain-rate effects in Ni/Al composite metal foams from quasi-static to low-velocity impact behaviour”, Composites: Part A (85), 1-11.
  • [59]. Alvandi-Tabrizi, Y., Whisler, D., A., Kim, H., and Rabiei A., (2015), “High strain rate behavior of composite metal foams”, Materials Science & Engineering A, 631, 248-257
  • [60]. Gökmen, U., ve Türker, M., (2012), “Al2O3 İlavesinin Alüminyum Ve Alumix 231 Esaslı Metalik Köpüğün Köpürme Özelliklerine Etkisi”, Journal of the Faculty of Engineering and Architecture of Gazi University, Vol 27, No 3, 651-658.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Çağrı Vakkas Yıldırım 0000-0002-0763-807X

Yayımlanma Tarihi 27 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

APA Yıldırım, Ç. V. (2018). Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri. İleri Teknoloji Bilimleri Dergisi, 7(2), 100-116.
AMA Yıldırım ÇV. Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri. İleri Teknoloji Bilimleri Dergisi. Eylül 2018;7(2):100-116.
Chicago Yıldırım, Çağrı Vakkas. “Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları Ve Malzeme Özellikleri”. İleri Teknoloji Bilimleri Dergisi 7, sy. 2 (Eylül 2018): 100-116.
EndNote Yıldırım ÇV (01 Eylül 2018) Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri. İleri Teknoloji Bilimleri Dergisi 7 2 100–116.
IEEE Ç. V. Yıldırım, “Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri”, İleri Teknoloji Bilimleri Dergisi, c. 7, sy. 2, ss. 100–116, 2018.
ISNAD Yıldırım, Çağrı Vakkas. “Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları Ve Malzeme Özellikleri”. İleri Teknoloji Bilimleri Dergisi 7/2 (Eylül 2018), 100-116.
JAMA Yıldırım ÇV. Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri. İleri Teknoloji Bilimleri Dergisi. 2018;7:100–116.
MLA Yıldırım, Çağrı Vakkas. “Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları Ve Malzeme Özellikleri”. İleri Teknoloji Bilimleri Dergisi, c. 7, sy. 2, 2018, ss. 100-16.
Vancouver Yıldırım ÇV. Metalik Köpük Malzemelerin Üretim Yöntemleri, Uygulama Alanları ve Malzeme Özellikleri. İleri Teknoloji Bilimleri Dergisi. 2018;7(2):100-16.