The objective of this study was evaluate the effect of ultrasound in bath at 30, 50 and 70oC for 5, 10, 20 and 30 min for improve functional and rheological properties of green lentil protein. The percentage of recovered lentil protein after alkaline extraction was calculated as 82.79%. The protein solubility of solutions significantly increased after sonication treatment. However, sonication treatment at 70oC after 20 min caused a partial reduction of protein solubility. Thermosonication process markedly improved the emulsion activity and stability index up to 176.02 m2/g and 40.68%, respectively, and also foaming capacity of sonicated protein suspension was 3.35-fold higher than that of untreated sample. Protein suspensions displayed shear-thinning, and results were satisfactorily fitted to Ostwald-de Waele model (R2< 0.926). As a result, the findings indicated that functional and rheological properties of proteins can be improved by ultrasound in combination with heating, and thus thermosonication process may be a valuable processing technology for modify of lentil protein.
AOAC. (1990). Official Methods of Analysis. Association of Official Analytical Chemists, Arlington, VA.
Aryee, F. N. A., & Nickerson, M. T. (2012). Formation of electrostatic complexes involving mixtures of lentil protein isolates and gum Arabic polysaccharides. Food Research International, 48(2), 520-527. doi:10.1016/j.foodres.2012.05.012
Ashraf, J., Liu, L., Awais, M., Xiao, T., Wang, L., Zhou, X., . . . Zhou, S. (2020). Effect of thermosonication pre-treatment on mung bean (Vigna radiata) and white kidney bean (Phaseolus vulgaris) proteins: Enzymatic hydrolysis, cholesterol lowering activity and structural characterization. Ultrason Sonochem, 66, 105121. doi:10.1016/j.ultsonch.2020.105121
Aydemir, L. Y., & Yemenicioğlu, A. (2013). Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT - Food Science and Technology, 50(2), 686-694. doi:10.1016/j.lwt.2012.07.023
Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537-546. doi:10.1016/j.foodres.2009.07.021
Chen, L., Ettelaie, R., & Akhtar, M. (2019). Improved enzymatic accessibility of peanut protein isolate pre-treated using thermosonication. Food Hydrocolloids, 93, 308-316. doi:10.1016/j.foodhyd.2019.02.050
Fernandez-Avila, C., Escriu, R., & Trujillo, A. J. (2015). Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Res Int, 75, 357-366. doi:10.1016/j.foodres.2015.05.026
Flores-Jimenez, N. T., Ulloa, J. A., Silvas, J. E. U., Ramirez, J. C. R., Ulloa, P. R., Rosales, P. U. B., . . . Leyva, R. G. (2019). Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Res Int, 121, 947-956. doi:10.1016/j.foodres.2019.01.025
Hu, H., Wu, J., Li-Chan, E. C. Y., Zhu, L., Zhang, F., Xu, X., . . . Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647-655. doi:10.1016/j.foodhyd.2012.08.001
Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386-393. doi:10.1016/j.jfoodeng.2009.02.001
Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z., & Herceg, I. L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86(2), 281-287. doi:10.1016/j.jfoodeng.2007.10.004
Joehnke, M. S., Jeske, S., Ispiryan, L., Zannini, E., Arendt, E. K., Bez, J., . . . Petersen, I. L. (2021). Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chem X, 9, 100112. doi:10.1016/j.fochx.2020.100112
Khan, S. H., Butt, M. S., Sharif, M. K., Sameen, A., Mumtaz, S., & Sultan, M. T. (2011). Functional properties of protein isolates extracted from stabilized rice bran by microwave, dry heat, and parboiling. J Agric Food Chem, 59(6), 2416-2420. doi:10.1021/jf104177x
Ladjal Ettoumi, Y., Chibane, M., & Romero, A. (2016). Emulsifying properties of legume proteins at acidic conditions: Effect of protein concentration and ionic strength. LWT - Food Science and Technology, 66, 260-266. doi:10.1016/j.lwt.2015.10.051
Lafarga, T., Álvarez, C., Bobo, G., & Aguiló-Aguayo, I. (2018). Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology. Lwt, 98, 106-112. doi:10.1016/j.lwt.2018.08.033
Liang, H.-N., & Tang, C.-H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33(2), 309-319. doi:10.1016/j.foodhyd.2013.04.005
Liu, D., Zhang, L., Wang, Y., Li, Z., Wang, Z., & Han, J. (2020). Effect of high hydrostatic pressure on solubility and conformation changes of soybean protein isolate glycated with flaxseed gum. Food Chem, 333, 127530. doi:10.1016/j.foodchem.2020.127530
Martinez-Velasco, A., Lobato-Calleros, C., Hernandez-Rodriguez, B. E., Roman-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrason Sonochem, 44, 97-105. doi:10.1016/j.ultsonch.2018.02.007
Ogunwolu, S. O., Henshaw, F. O., Mock, H.-P., Santros, A., & Awonorin, S. O. (2009). Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chemistry, 115(3), 852-858. doi:10.1016/j.foodchem.2009.01.011
Robinson, H. W., & Hogden, C. G. (1940). The biuret reaction in the determination of serum proteins. 1. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. Journal of Biological Chemistry, 135, 707-725.
Saricaoglu, F. T. (2020). Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. Int J Biol Macromol, 144, 760-769. doi:10.1016/j.ijbiomac.2019.11.034
Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. doi:10.1016/j.jfoodeng.2018.04.003
Sha, L., Koosis, A. O., Wang, Q., True, A. D., & Xiong, Y. L. (2021). Interfacial dilatational and emulsifying properties of ultrasound-treated pea protein. Food Chem, 350, 129271. doi:10.1016/j.foodchem.2021.129271
Tang, C.-H., Wang, X.-Y., Yang, X.-Q., & Li, L. (2009). Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. Journal of Food Engineering, 92(4), 432-437. doi:10.1016/j.jfoodeng.2008.12.017
Wang, J. Y., Yang, Y. L., Tang, X. Z., Ni, W. X., & Zhou, L. (2017). Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrason Sonochem, 38, 225-233. doi:10.1016/j.ultsonch.2017.03.018
Wang, Y., Ghosh, S., & Nickerson, M. T. (2019). Effect of pH on the formation of electrostatic complexes between lentil protein isolate and a range of anionic polysaccharides, and their resulting emulsifying properties. Food Chemistry, 298. doi:10.1016/j.foodchem.2019.125023
Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res Int, 109, 260-267. doi:10.1016/j.foodres.2018.04.044
Zhang, Q.-T., Tu, Z.-C., Xiao, H., Wang, H., Huang, X.-Q., Liu, G.-X., . . . Lin, D.-R. (2014). Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 92(1), 30-37. doi:10.1016/j.fbp.2013.07.006
Zhong, Z., & Xiong, Y. L. (2020). Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrason Sonochem, 62, 104908. doi:10.1016/j.ultsonch.2019.104908
Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., . . . McClements, D. J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res Int, 106, 853-861. doi:10.1016/j.foodres.2018.01.060
Year 2021,
Volume: 2 Issue: 2, 40 - 45, 06.12.2021
AOAC. (1990). Official Methods of Analysis. Association of Official Analytical Chemists, Arlington, VA.
Aryee, F. N. A., & Nickerson, M. T. (2012). Formation of electrostatic complexes involving mixtures of lentil protein isolates and gum Arabic polysaccharides. Food Research International, 48(2), 520-527. doi:10.1016/j.foodres.2012.05.012
Ashraf, J., Liu, L., Awais, M., Xiao, T., Wang, L., Zhou, X., . . . Zhou, S. (2020). Effect of thermosonication pre-treatment on mung bean (Vigna radiata) and white kidney bean (Phaseolus vulgaris) proteins: Enzymatic hydrolysis, cholesterol lowering activity and structural characterization. Ultrason Sonochem, 66, 105121. doi:10.1016/j.ultsonch.2020.105121
Aydemir, L. Y., & Yemenicioğlu, A. (2013). Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT - Food Science and Technology, 50(2), 686-694. doi:10.1016/j.lwt.2012.07.023
Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537-546. doi:10.1016/j.foodres.2009.07.021
Chen, L., Ettelaie, R., & Akhtar, M. (2019). Improved enzymatic accessibility of peanut protein isolate pre-treated using thermosonication. Food Hydrocolloids, 93, 308-316. doi:10.1016/j.foodhyd.2019.02.050
Fernandez-Avila, C., Escriu, R., & Trujillo, A. J. (2015). Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Res Int, 75, 357-366. doi:10.1016/j.foodres.2015.05.026
Flores-Jimenez, N. T., Ulloa, J. A., Silvas, J. E. U., Ramirez, J. C. R., Ulloa, P. R., Rosales, P. U. B., . . . Leyva, R. G. (2019). Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Res Int, 121, 947-956. doi:10.1016/j.foodres.2019.01.025
Hu, H., Wu, J., Li-Chan, E. C. Y., Zhu, L., Zhang, F., Xu, X., . . . Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647-655. doi:10.1016/j.foodhyd.2012.08.001
Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386-393. doi:10.1016/j.jfoodeng.2009.02.001
Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z., & Herceg, I. L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86(2), 281-287. doi:10.1016/j.jfoodeng.2007.10.004
Joehnke, M. S., Jeske, S., Ispiryan, L., Zannini, E., Arendt, E. K., Bez, J., . . . Petersen, I. L. (2021). Nutritional and anti-nutritional properties of lentil (Lens culinaris) protein isolates prepared by pilot-scale processing. Food Chem X, 9, 100112. doi:10.1016/j.fochx.2020.100112
Khan, S. H., Butt, M. S., Sharif, M. K., Sameen, A., Mumtaz, S., & Sultan, M. T. (2011). Functional properties of protein isolates extracted from stabilized rice bran by microwave, dry heat, and parboiling. J Agric Food Chem, 59(6), 2416-2420. doi:10.1021/jf104177x
Ladjal Ettoumi, Y., Chibane, M., & Romero, A. (2016). Emulsifying properties of legume proteins at acidic conditions: Effect of protein concentration and ionic strength. LWT - Food Science and Technology, 66, 260-266. doi:10.1016/j.lwt.2015.10.051
Lafarga, T., Álvarez, C., Bobo, G., & Aguiló-Aguayo, I. (2018). Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology. Lwt, 98, 106-112. doi:10.1016/j.lwt.2018.08.033
Liang, H.-N., & Tang, C.-H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33(2), 309-319. doi:10.1016/j.foodhyd.2013.04.005
Liu, D., Zhang, L., Wang, Y., Li, Z., Wang, Z., & Han, J. (2020). Effect of high hydrostatic pressure on solubility and conformation changes of soybean protein isolate glycated with flaxseed gum. Food Chem, 333, 127530. doi:10.1016/j.foodchem.2020.127530
Martinez-Velasco, A., Lobato-Calleros, C., Hernandez-Rodriguez, B. E., Roman-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrason Sonochem, 44, 97-105. doi:10.1016/j.ultsonch.2018.02.007
Ogunwolu, S. O., Henshaw, F. O., Mock, H.-P., Santros, A., & Awonorin, S. O. (2009). Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chemistry, 115(3), 852-858. doi:10.1016/j.foodchem.2009.01.011
Robinson, H. W., & Hogden, C. G. (1940). The biuret reaction in the determination of serum proteins. 1. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. Journal of Biological Chemistry, 135, 707-725.
Saricaoglu, F. T. (2020). Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. Int J Biol Macromol, 144, 760-769. doi:10.1016/j.ijbiomac.2019.11.034
Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. doi:10.1016/j.jfoodeng.2018.04.003
Sha, L., Koosis, A. O., Wang, Q., True, A. D., & Xiong, Y. L. (2021). Interfacial dilatational and emulsifying properties of ultrasound-treated pea protein. Food Chem, 350, 129271. doi:10.1016/j.foodchem.2021.129271
Tang, C.-H., Wang, X.-Y., Yang, X.-Q., & Li, L. (2009). Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. Journal of Food Engineering, 92(4), 432-437. doi:10.1016/j.jfoodeng.2008.12.017
Wang, J. Y., Yang, Y. L., Tang, X. Z., Ni, W. X., & Zhou, L. (2017). Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrason Sonochem, 38, 225-233. doi:10.1016/j.ultsonch.2017.03.018
Wang, Y., Ghosh, S., & Nickerson, M. T. (2019). Effect of pH on the formation of electrostatic complexes between lentil protein isolate and a range of anionic polysaccharides, and their resulting emulsifying properties. Food Chemistry, 298. doi:10.1016/j.foodchem.2019.125023
Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res Int, 109, 260-267. doi:10.1016/j.foodres.2018.04.044
Zhang, Q.-T., Tu, Z.-C., Xiao, H., Wang, H., Huang, X.-Q., Liu, G.-X., . . . Lin, D.-R. (2014). Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 92(1), 30-37. doi:10.1016/j.fbp.2013.07.006
Zhong, Z., & Xiong, Y. L. (2020). Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrason Sonochem, 62, 104908. doi:10.1016/j.ultsonch.2019.104908
Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., . . . McClements, D. J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res Int, 106, 853-861. doi:10.1016/j.foodres.2018.01.060
Baskıncı, T., Amanda Apud, D. A., & Gül, O. (2021). Effect of thermosonication on functional and rheological properties of green lentil protein. European Food Science and Engineering, 2(2), 40-45.