Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 96 - 100, 30.12.2024
https://doi.org/10.55147/efse.1559159

Abstract

References

  • Brandi, A., Spurio, R., Gualerzi, C. O., & Pon, C. L. (1999). Massive presence of the Escherichia coli ‘major cold‐shock protein’CspA under non‐stress conditions. The EMBO Journal, 18, 1653-1659. doi:10.1093/emboj/18.6.1653
  • Broadbent, J. R., Oberg, C. J., Wang, H., & Wei, L. (1997). Attributes of the heat shock response in three species of dairy Lactobacillus. Systematic and Applied Microbiology, 20(1), 12-19. doi:10.1016/S0723-2020(97)80043-4 Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3), 351-366.
  • Dijkstra, A. R., Alkema, W., Starrenburg, M. J., Hugenholtz, J., van Hijum, S. A., & Bron, P. A. (2014). Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness. Microbial Cell Factories, 13, 1-11. doi:10.1186/s12934-014-0148-6
  • El Kafsi, H., Binesse, J., Loux, V., Buratti, J., Boudebbouze, S., Dervyn, R., ... & van de Guchte, M. (2014). Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics, 15, 1-12. doi:10.1186/1471-2164-15-407
  • Fonseca, F., Cenard, S., Passot, S. (2015). Freeze-Drying of Lactic Acid Bacteria. In: Wolkers, W., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 1257. Springer, New York, NY. doi:10.1007/978-1-4939-2193-5_24
  • Goldstein, J., Pollitt, N. S., & Inouye, M. (1990). Major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences, 87(1), 283-287. doi:10.1073/pnas.87.1.283
  • Kets, E., Teunissen, P., & De Bont, J. (1996). Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Applied and Environmental Microbiology, 62(1), 259-261. doi:10.1128/aem.62.1.259-261.1996
  • Kim, W. S., Khunajakr, N., Ren, J., & Dunn, N. W. (1998). Conservation of the major cold shock protein in lactic acid bacteria. Current Microbiology, 37, 333-336. doi:10.1007/s002849900387
  • Kondratenko, M., Kondareva, S., Gyosheva, B., Vlaykovska, A., Shishkova, I., Toteva, N., Goranova, L. (1979). Method for obtaining combination starters for Bulgarian yoghurt. U.S. Patent 4156019.
  • Li, W., Yang, L., Nan, W., Lu, J., Zhang, S., Ujiroghene, O. J., ... & Lv, J. (2020). Whole-genome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. bulgaricus LJJ. Applied Microbiology and Biotechnology, 104, 7631-7642. doi:10.1007/s00253-020-10788-5
  • Lim, E. M., Ehrlich, S. D., & Maguin, E. (2000). Identification of stress‐inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. ELECTROPHORESIS: An International Journal, 21(12), 2557-2561. doi:10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262
  • Liu, E., Hao, P., Konno, T., Yu, Y., Oda, M., Zheng, H., & Ji, Z. S. (2012). Amino acid biosynthesis and proteolysis in Lactobacillus bulgaricus revisited: A genomic comparison. Computational Molecular Bioscience, 2, 61-77. doi:10.4236/cmb.2012.23006
  • Masek, T., Vopalensky, V., Suchomelova, P., & Pospisek, M. (2005). Denaturing RNA electrophoresis in TAE agarose gels. Analytical Biochemistry, 336(1), 46-50. doi:10.1016/j.ab.2004.09.010
  • Mullan, W.M.A. (2006). Use of starter concentrates in fermented dairy product manufacture. [On-line]. Available from: https://www.dairyscience.info/index.php/cheese-starters/108-starter-concentrates.html . Accessed: 9 September, 2024. Updated July 2017.
  • Rumian, N., Angelov, M., & Tsvetkov, T. S. (1993). Comparative investigations on activity of Lactobacillus bulgaricus during lyophilization. Cryobiology, 30(4), 438-442. doi:10.1006/cryo.1993.1044
  • Serror, P., Dervyn, R., Ehrlich, S. D., & Maguin, E. (2003). sp-like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock. FEMS Microbiology Letters, 226(2), 323-330. doi:10.1016/S0378-1097(03)00594-9
  • Shao, Y., Gao, S., Guo, H., & Zhang, H. (2014). Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. Journal of Dairy Science, 97(3), 1270-1280. doi:10.3168/jds.2013-7536
  • Streit, F., Delettre, J., Corrieu, G., & Béal, C. (2008). Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of Applied Microbiology, 105(4), 1071-1080. doi:10.1111/j.1365-2672.2008.03848.x
  • Urshev, Z., Hajo, K., Lenoci, L., Bron, P. A., Dijkstra, A., Alkema, W., ... & van Hijum, S. A. (2016). Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB. B5. Genome Announcements, 4(5), e01090-16. doi:10.1128/genomeA.01090-16.
  • Van De Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., ... & Maguin, E. (2006). The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proceedings of the National Academy of Sciences, 103(24), 9274-9279. doi:10.1073/pnas.0603024103
  • van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S.D., Maguin, E. (2002). Stress responses in lactic acid bacteria. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. doi:10.1007/978-94-017-2029-8_12
  • Wu, R., Song, X., Liu, Q., Ma, D., Xu, F., Wang, Q., ... & Wu, J. (2016). Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress. Annals of Microbiology, 66, 1181-1188. doi:10.1007/s13213-016-1199-1
  • Yungareva, T., & Urshev, Z. (2018). The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein. World Journal of Microbiology and Biotechnology, 34, 97. doi:10.1007/s11274-018-2480-1
  • Zhang, Y., Burkhardt, D. H., Rouskin, S., Li, G. W., Weissman, J. S., & Gross, C. A. (2018). A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Molecular Cell, 70(2), 274-286. doi:10.1016/j.molcel.2018.02.035

Dynamic expression of heat-shock and acid-tolerance related genes of Lactobacillus delbrueckii ssp. bulgaricus LBB.B5 in milk

Year 2024, Volume: 5 Issue: 2, 96 - 100, 30.12.2024
https://doi.org/10.55147/efse.1559159

Abstract

Lactobacillus delbrueckii ssp. bulgaricus is a central species in the production of fermented dairy food. However, from the point of view of starter culture production this species is extremely sensitive to freeze-drying. Therefore, it is essential to understand the physiological processes and adaptation mechanisms of the bacterial cell, especially its response to factors such as heat-, cold- and acid stress. Here we report the results of the dynamic expression monitoring of heat/cold-shock related genes (hsp60 and cspA) and genes putatively contributing to acid-tolerance (ornB, thrB and thrC) in L. delbr. ssp. bulgaricus LBB.B5 grown in milk. These genes were selected as hsp60 and cspA encode a heat-shock and a cold-shock protein, respectively, while ornB encodes an ornithine decarboxylase, related to acid tolerance in this species. Genes thrB and thrC are involved in threonine synthesis and are of particular interest as unlike the majority of amino-acids, the threonine synthesis pathway is conserved in all L. delbr. ssp. bulgaricus strains. Expression levels were monitored by RT-qPCR for 7 hours of fermentation at 42oC and then until the 24th hour under cold storage at 4oC. Samples at 3h were used as control.
Two distinct patterns in the expression dynamics of the analysed genes were observed. Genes cspA, ornB, thrB and thrC, followed a pattern with maximal expression at 5h of the fermentation with levels of 11.6, 6.8, 3.9 and 2.4 times the control, respectively. Maximal expression levels coincided with the transition of the culture from exponential to stationary phase at a pH threshold of 5.0. Gene hsp60 showed a different pattern with gradually increasing expression throughout the hole fermentation process, including after cold storage when expression level reached 6.4 times the control.
The upregulation of threonine biosynthesis and of a cold-shock protein synthesis with the onset of the stationary phase may suggest that together with the activity of ornithine decarboxylase, they go beyond their function of serving the amino-acid anabolism or managing cold stress, but rather facilitate the transition of the cells to stationary phase and/or their adaptation to acidic conditions. The gradual upregulation of hsp60 on the other hand may reflect the adaptation of the cells to growth at higher temperature (42oC) and subsequent transfer to cold storage.

References

  • Brandi, A., Spurio, R., Gualerzi, C. O., & Pon, C. L. (1999). Massive presence of the Escherichia coli ‘major cold‐shock protein’CspA under non‐stress conditions. The EMBO Journal, 18, 1653-1659. doi:10.1093/emboj/18.6.1653
  • Broadbent, J. R., Oberg, C. J., Wang, H., & Wei, L. (1997). Attributes of the heat shock response in three species of dairy Lactobacillus. Systematic and Applied Microbiology, 20(1), 12-19. doi:10.1016/S0723-2020(97)80043-4 Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3), 351-366.
  • Dijkstra, A. R., Alkema, W., Starrenburg, M. J., Hugenholtz, J., van Hijum, S. A., & Bron, P. A. (2014). Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness. Microbial Cell Factories, 13, 1-11. doi:10.1186/s12934-014-0148-6
  • El Kafsi, H., Binesse, J., Loux, V., Buratti, J., Boudebbouze, S., Dervyn, R., ... & van de Guchte, M. (2014). Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics, 15, 1-12. doi:10.1186/1471-2164-15-407
  • Fonseca, F., Cenard, S., Passot, S. (2015). Freeze-Drying of Lactic Acid Bacteria. In: Wolkers, W., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 1257. Springer, New York, NY. doi:10.1007/978-1-4939-2193-5_24
  • Goldstein, J., Pollitt, N. S., & Inouye, M. (1990). Major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences, 87(1), 283-287. doi:10.1073/pnas.87.1.283
  • Kets, E., Teunissen, P., & De Bont, J. (1996). Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Applied and Environmental Microbiology, 62(1), 259-261. doi:10.1128/aem.62.1.259-261.1996
  • Kim, W. S., Khunajakr, N., Ren, J., & Dunn, N. W. (1998). Conservation of the major cold shock protein in lactic acid bacteria. Current Microbiology, 37, 333-336. doi:10.1007/s002849900387
  • Kondratenko, M., Kondareva, S., Gyosheva, B., Vlaykovska, A., Shishkova, I., Toteva, N., Goranova, L. (1979). Method for obtaining combination starters for Bulgarian yoghurt. U.S. Patent 4156019.
  • Li, W., Yang, L., Nan, W., Lu, J., Zhang, S., Ujiroghene, O. J., ... & Lv, J. (2020). Whole-genome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. bulgaricus LJJ. Applied Microbiology and Biotechnology, 104, 7631-7642. doi:10.1007/s00253-020-10788-5
  • Lim, E. M., Ehrlich, S. D., & Maguin, E. (2000). Identification of stress‐inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. ELECTROPHORESIS: An International Journal, 21(12), 2557-2561. doi:10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262
  • Liu, E., Hao, P., Konno, T., Yu, Y., Oda, M., Zheng, H., & Ji, Z. S. (2012). Amino acid biosynthesis and proteolysis in Lactobacillus bulgaricus revisited: A genomic comparison. Computational Molecular Bioscience, 2, 61-77. doi:10.4236/cmb.2012.23006
  • Masek, T., Vopalensky, V., Suchomelova, P., & Pospisek, M. (2005). Denaturing RNA electrophoresis in TAE agarose gels. Analytical Biochemistry, 336(1), 46-50. doi:10.1016/j.ab.2004.09.010
  • Mullan, W.M.A. (2006). Use of starter concentrates in fermented dairy product manufacture. [On-line]. Available from: https://www.dairyscience.info/index.php/cheese-starters/108-starter-concentrates.html . Accessed: 9 September, 2024. Updated July 2017.
  • Rumian, N., Angelov, M., & Tsvetkov, T. S. (1993). Comparative investigations on activity of Lactobacillus bulgaricus during lyophilization. Cryobiology, 30(4), 438-442. doi:10.1006/cryo.1993.1044
  • Serror, P., Dervyn, R., Ehrlich, S. D., & Maguin, E. (2003). sp-like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock. FEMS Microbiology Letters, 226(2), 323-330. doi:10.1016/S0378-1097(03)00594-9
  • Shao, Y., Gao, S., Guo, H., & Zhang, H. (2014). Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. Journal of Dairy Science, 97(3), 1270-1280. doi:10.3168/jds.2013-7536
  • Streit, F., Delettre, J., Corrieu, G., & Béal, C. (2008). Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of Applied Microbiology, 105(4), 1071-1080. doi:10.1111/j.1365-2672.2008.03848.x
  • Urshev, Z., Hajo, K., Lenoci, L., Bron, P. A., Dijkstra, A., Alkema, W., ... & van Hijum, S. A. (2016). Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus LBB. B5. Genome Announcements, 4(5), e01090-16. doi:10.1128/genomeA.01090-16.
  • Van De Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P., ... & Maguin, E. (2006). The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proceedings of the National Academy of Sciences, 103(24), 9274-9279. doi:10.1073/pnas.0603024103
  • van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S.D., Maguin, E. (2002). Stress responses in lactic acid bacteria. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. doi:10.1007/978-94-017-2029-8_12
  • Wu, R., Song, X., Liu, Q., Ma, D., Xu, F., Wang, Q., ... & Wu, J. (2016). Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress. Annals of Microbiology, 66, 1181-1188. doi:10.1007/s13213-016-1199-1
  • Yungareva, T., & Urshev, Z. (2018). The aggregation-promoting factor in Lactobacillus delbrueckii ssp. bulgaricus: confirmation of the presence and expression of the apf gene and in silico analysis of the corresponding protein. World Journal of Microbiology and Biotechnology, 34, 97. doi:10.1007/s11274-018-2480-1
  • Zhang, Y., Burkhardt, D. H., Rouskin, S., Li, G. W., Weissman, J. S., & Gross, C. A. (2018). A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Molecular Cell, 70(2), 274-286. doi:10.1016/j.molcel.2018.02.035
There are 25 citations in total.

Details

Primary Language English
Subjects Fermentation Technology, Food Microbiology, Drying Technologies, Dairy Technology
Journal Section Research Articles
Authors

Miroslava Terzieva-nakeva 0009-0004-7312-5012

Zoltan Urshev This is me 0000-0003-4452-2321

Early Pub Date December 17, 2024
Publication Date December 30, 2024
Submission Date October 1, 2024
Acceptance Date November 15, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Terzieva-nakeva, M., & Urshev, Z. (2024). Dynamic expression of heat-shock and acid-tolerance related genes of Lactobacillus delbrueckii ssp. bulgaricus LBB.B5 in milk. European Food Science and Engineering, 5(2), 96-100. https://doi.org/10.55147/efse.1559159