Diğer
BibTex RIS Kaynak Göster

Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı

Yıl 2018, Cilt: 14 Sayı: 2, 148 - 165, 01.06.2018
https://doi.org/10.22392/egirdir.371340

Öz

Sanayileşme ve kentleşmenin artması neticesinde ağır metal deşarjı da
artmış ve bu da sucıl ekosistemlerde önemli bozulmalara yol açmıştır. Ağır
metal kirliliği gözlenen sucul ekosistemlerin biyoremediasyonuna yönelik ilgi,
maliyetlerinin düşük olması ve çevre dostu olmaları nedeniyle giderek
artmaktadır. Bu bağlamda, ağır metal ile kirlenmiş atık sular ve doğal suların
remediasyonunda sucul makrofitler daha sık kullanılmaya başlamıştır. Bu
çalışmada, remediasyonda sık kullanılan sucul makrofitler ve remediasyon
kapasiteleri hakkında son yıllarda yapılan çalışmalar derlenmiştir.

Kaynakça

  • Ahmad, S. S., Reshi, Z. A., Shah M. A., Rashid, I., Ara, R., Andarabi, S. M. A. (2016).Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: management implications. Wetlands Ecol Manage, 24,469–475. Ajayi, T. O., Ogunbayo, A. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J. Sustain. Develop., 5 (7), 80–90. Akdur, R. (2005). Avrupa Birliği ve Türkiye'de Çevre Koruma Politikaları "Türkiye"nin Avrupa Birliğine Uyumu” ATAUM Araştırma dizisi no:23, Ankara Üniversitesi Basımevi, Ankara. Alrumman, S., El-kott, A., Sherif, K. (2016). Water Pollution: Source and Treatment. American Journal of Environmental Engineering, 6, 88-89. Alvarado, S., Guédez, M., Lué-Merú, M. P., Nelson, G., Alvaro, A., Jesús, A. C., Gyula, Z. (2008). Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technology, 99, 8436–8440. Appenroth, K. J. (2010). Definition of “Heavy Metals” and Their Role in Biological Systems. In Soil Heavy Metals, 19, 19-29. Arora, A., Saxena, S., Sharma, D. K. (2006). Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology & Biotechnology, 22, 97-100. Arora, A., Sood, A., Singh, P. K. (2004). Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology, 3, 302-304. Baykal, H., Baykal, T. (2008). “Küreselleşen Dünyada Çevre Sorunları”, Mustafa Kemal Ünv. Sosyal Bilimler Enstitüsü Dergisi, 5(9), 1-17. Boyd, R. S. (2004). Ecology of Metal Hyperaccumulation. The New Phytologist, 162(3), 563-567. Das, S., Goswami, S., Talukdar, A. D. (2014). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92(2), 169-174. Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. 111p. Springer-Nature. Doni, S., Macci, C., Peruzzi, E., Iannelli, R. Masciandaro, G. (2015). Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecological Engineering, 81, 146-157. Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807. Ergönül, M.B., Atasağun, S. 2017. Chapter 16 -The Effects of Chronic Low Level Zinc (Zn) Exposure on the Hematological Profile of Tench, Tinca tinca L., 1758. In: Trends in Fisheries and Aquatic Animal Health, Editor: Berilis, P. Bentham Science Publishing. Etim, E. E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3), 120-136. Fisher, S. W. (1995). Mechanism of Bioaccumulation in Aquatic Systems. In Reviews of Environmental Contamination and Toxicology (Vol. 142, pp. 87-117). New York: Springer. Forni, C., Chen, J., Tancioni, L., Caiola, M. (2001). Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Research, 35(6), 1592-1598. Fu, F., Wang, Q. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407-418. Galal, T. M., Farahat, E. A. (2015). The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environmental Monitoring and Assessment, 187(11), 701. Garnczarska, M, Ratajczak, L. (2000). Metabolic responses of Lemna minor to lead ions I. Growth, chlorophyll level and activity of fermentative enzymes. Acta Physiol Plant, 22(4),423–7. Gupta, P., Roy, S., Mahindrakar, A. B. (2012). Treatment of Water Using Water Hyacinth, Water Lettuce and Vetiver Grass - A Review. Resources and Environment, 2(5), 202-215 Hasasn, S. H., Talat, M., Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresource Technology, 98(4) 918-928. Hou, W., Chen, X., Song, G., Wang, Q., Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45, 62-69. Hurd, N. A., Sternberg, S. P. K. (2008). Bioremoval of aqueous lead using Lemna minor. International Journal of Phytoremediation, 10, 278-288. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. Järup, L. (2003). Hazards of metal contamination. British Medical Bulletin, 68, 167-182. Jayaweeraa, M. W., Kasturiarachchia, J. C., Kularatnea, R. K. A., Wijeyekoonb, S. L. J.2008. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J. Environ. Manage. 87 (3), 450–460. Johnson, D., Kershaw, L., MacKinnon, A., Pojar, J., (1995). Plants of the Western Boreal Forest and Aspen Parkland. Lone Pine, Vancouver, BC. Kara, Y., Basaran, D., Kara, I., Zeytunluoglu, A., Genc, H. (2003). Bioaccumulation of nickel by aquatic macrophyta Lemna minor (duckweed). Int. J. Agr. Biol., 5 (3), 281-283. Keskinan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 1-5. Keskinkan, O., Goksu, M. Z. L, Yuceer, A., Basibuyuk, M. (2007). Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci., 7, 192-196. Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., Forster, C. F.(2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol., 92(2),197-200. Khellaf, N., Zerdaoui, M. (2009). Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 100,6137–6140. Khosravi, M., Rakhshaee, R., Ganji, M. T. (2005). Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors. Journal of Hazardous Materials, 127(1-3),228-237. Kocataş, A. (2008). Çevre kirlenmesi, Çevre Biyolojisi. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, pp. 456-471,İzmir. Kulshreshtha, A., Ranu, A., Manika, B., Shilpi, S. (2014). A Review on Bioremediation of Heavy Metals in Contaminated Water. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 44-50. Lesage, E., Mundia C., Rousseau, D. PL., Van de Moortel UGent, A., Du Laing UGent, G., Tack UGent, F., De Pauw, N., Verloo, M. (2008). Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. WASTEWATER TREATMENT, PLANT DYNAMICS AND MANAGEMENT IN CONSTRUCTED AND NATURAL WETLANDS. p.211-221 Lissy, P. N. M., Madhu, G. (2011). Removal of heavy metals from waste water using water hyacinth. ACEE International Journal On Transportation And Urban Development. (IJTUD), 1, 48-52. Lu, Q. He, Z. L. Graetz, D. A. Stoffella, P. J., Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17(1),84-96. Lu, Q., He, Z. L., Graetz, D. A. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 18, 978-86 Maine, M. A., Sune, N., Hadad, H. (2006). Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering, 26, 341-347. Maltby, L., Arnold, D., Arts, G., Davies, J., Heimbach, F., Pickl, C., Poulsen, V. (2010). Aquatic macrophyte risk assessment for pesticides. SETAC Europe Workshop AMRAP, Wageningen, Netherlands, pp 135. SETAC Press & CRC Press, Taylor & Francis Group, Boca Raton, London, New York. Miretzky, P. Saralegui, A. Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals. Chemosphere, 57, 997–1005. Mishra, V. K. Tripathi, B. D. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99(15), 7091-7097. Mishra, V. K., Tripathi, B. D., Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172(2-3),749-54. Mokhtar, H., Morad, N., Fizri, F. F. A. (2011). Hyperaccumulation of copper by two species of aquatic plants. Intern. Conf. Environ. Sci. Eng. IPCBEE 8. IACSIT Press, Singapore. Moyo, P., Chapungu, L., and Mudzengi, B. (2013). Effectiveness of water Hyacinth (Eichhornia crassipes) in remediating polluted water: The case of Shagashe river in Masvingo, Zimbabwe. Advances in Applied Science Research, 4(4):55-62. Nahlik, A., Mitsch, W. J. (2006). Tropical Treatment Wetlands Dominated by Free-Floating Macrophytes for Water Quality Improvement in Costa Rica. Ecological Engineering, 28(3), 246-257. Noorjahan, C. M., Jamuna, S. (2015). Biodegradation of Sewage Waste Water Using Azolla microphylla and Its Reuse for Aquaculture of Fish Tilapia mossambica. Journal of Environmental Science, Toxicology and Food Technology, 9(3), 75-80. Özbolat, G., Tuli, A. (2016). Ağır Metal Toksisitesinin İnsan Sağlığına Etkileri. Arşiv Kaynak Tarama Dergisi. 25(4), 502-521. Raghav, N., Shrivastava, J. N. (2016). Toxic Pollution in River Water and Bacterial Remediation: An Overview. International Journal of Current Microbiology and Applied Sciences. 5(4), 244-266. Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytorem. 10, 430–439. Rai, U. N., Sinha, S., Tripathi, R. D., Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol. Eng., 5, 5-12. Razzaq, R. (2017). Phytoremediation: An Environmental Friendly Technique - A Review. Journal of Environmental Analytical Chemistry, 4(2), 195. Rezania, S., Din, M. F. M., Ponraj, M., Sairan, F. M., Binti Kamaruddin, S. F. (2013). Nutrient uptake and wastewater purification with water Hyacinth and its effect on plant growth in batch system. Journal of Environmental Treatment Techniques (JETT), 1, 81-85. Roberts, A. E., Boylen, C. W., Nierzwicki-Bauer, S. A. (2014). Effects of lead accumulation on the Azolla caroliniana-Anabaena association. Ecotoxicol Environ Saf. 10.1016/j.ecoenv.2014.01.019. Epub 2014 Feb 5 Sanchez-Galvan, G., Monroy, O., Gomez, J., Olguin, E. J. (2008). Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil Pollution, 194, 77-90. Shafi, N., Pandit, A. K., Kamili, A. N., Mushtaq, B. (2015). Heavy Metal Accumulation by Azolla pinnata of Dal Lake Ecosystem. India. Journal of Environment Protection and Sustainable Development, 1(1), 8-12. Sharma, S., Singh, B., Manchanda, V. K. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res Int., 22(2), 946-962. Sood, A., Uniyal, P. L., Prasanna, R., Ahuwalia, A. S. (2011). Phytoremediation Potential of Aquatic Macrophyte, Azolla. AMBIO, 41, 122–137 Stankovic, Z., Pajevic, S., Vuckovic, M. (2000). Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum, 43(4), 583-585. Tackholm, V. (1974). Student's flora of Egypt, 2nd edition, P: 888 Cairo University (publ.), co-operation printing company, Beirut. Tangahu, B. J., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, Article ID 939161, 31 pp. Taylan, Z. S. ve Böke Özkoç, H. (2007). Potansiyel ağır metal kirliliğinin belirlenmesinde akuatik organizmaların biokullanılabilirliliği. BAÜ FBE Dergisi, 9(2), 17-33. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. 101, 133-164. Tyagi, S., Garg, N., Paudel, R. (2014). Environmental Degradation: Causes and Consequences. European Researcher. 81(8-2), 1491-1498. Tripathi, A., Ranjan, M. R. (2015). Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. J Bioremed Biodeg, 6, 315 Tripathy, B. D., Upadhyay, A. R., (2003). Dairy effluent polishing by aquatic macrophytes. Water. Air. Soil. Pollut., 9, 377-385. US EPA. (Environmental Protection Agency), “Introduction To Phytoremediation”, EPA/600/r–99/107, Cincinati, Ohio, U.S.A, pp: 72, http://www.clu-in.org Üçüncü, E., Tunca, E., Fikirdeşici, Ş., Özkan, A. D., Altındağ, A. (2013). Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol. 91, 600-604. Ünlü, A., Tunç, M. S. (2007). Evsel Atıksu Deşarjı Öncesinde ve Sonrasında Kehli Deresi’nin Su Kalitesi Değişiminin İncelenmesi, İtüdergisi/E Su Kirlenmesi Kontrolü, 17(2), 65-75. Vasavi, A., Usha, R., Swamy, P. M. 2010. Phytoremediation – An overview review. Journal of Industrial Pollution Control. 26(1), 83-88. Vesely, T. Tlustos, P. ve Szakova, J. (2011). The Use of Water Lettuce (Pistia Stratiotes L.) for Rhizofiltration of a Highly Polluted Solution by Cadmium and Lead. International Journal of Phytoremediation, 13(9), 859-872. Wang, J., Feng, X., Anderson, C. W., Xing, Y., Shang, L. (2012). Remediation of mercury contaminated sites - A review. Journal of Hazardous Materials, 221-222:1-18. Wetzel, R. G. (2001). Limnoloji: Göl ve Nehir Ekosistemleri. 3. Basımdan Çeviri. Çeviri Editörü; M. B. Ergönül. 2017. 1006 p. Nobel Yayınevi. Yabanlı, M. (2014). Bioaccumulation of heavy metals in tissues of the gibel carp Carassius gibelio: Example of Marmara Lake, Turkey. Russian Journal of Biological Invasions.5(3),217-224. Yalçın, V. (2014). Yüksek Lisans Tezi. Bazı Ağır Metallerin (Pb, Cd, Ni) Sucul Bitkiler (Salvinia natans (L.), Lemna minor L.) Üzerinde Yaptığı Stres Ve Biyolojik Yanıtlar, Nevşehir Hacı Bektaş Veli Üniversitesi, Fen Bilimleri Enstitüsü, Nevşehir. Yavuz, O., Sarıgül, N. (2016). Toprak ve Sucul Ortamlardaki Ağır Metal Kirliliği ve Ağır Metal Dirençli Mikroorganizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7(1), 44-51. Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., McHenry, M. P. Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817-831.

The Use of Some Sub-mersed and Free floating Aquatic Macrophytes in the Bioremediation of Heavy Metal Pollution

Yıl 2018, Cilt: 14 Sayı: 2, 148 - 165, 01.06.2018
https://doi.org/10.22392/egirdir.371340

Öz

The dramatic increase in industrialization and urbanization has led to an increase in the discharge rate of
wasterwaters including heavy metals which in turn caused significant alterations in aquatic ecosystems.
Bioremediation of aquatic ecosystems polluted with heavy metals has been favaoured in the recent years due
to ecofriendly applications and lower costs. Thus, there is an increase in the use of aquatic macrophytes for the
remediation of wastewater and natural water bodies polluted with heavy metals. In this review paper, the
recent research focusing on the frequently used some sub-mersed and free floating aquatic macophytes and
their remediation capacity is reviewed. 

Kaynakça

  • Ahmad, S. S., Reshi, Z. A., Shah M. A., Rashid, I., Ara, R., Andarabi, S. M. A. (2016).Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: management implications. Wetlands Ecol Manage, 24,469–475. Ajayi, T. O., Ogunbayo, A. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). J. Sustain. Develop., 5 (7), 80–90. Akdur, R. (2005). Avrupa Birliği ve Türkiye'de Çevre Koruma Politikaları "Türkiye"nin Avrupa Birliğine Uyumu” ATAUM Araştırma dizisi no:23, Ankara Üniversitesi Basımevi, Ankara. Alrumman, S., El-kott, A., Sherif, K. (2016). Water Pollution: Source and Treatment. American Journal of Environmental Engineering, 6, 88-89. Alvarado, S., Guédez, M., Lué-Merú, M. P., Nelson, G., Alvaro, A., Jesús, A. C., Gyula, Z. (2008). Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technology, 99, 8436–8440. Appenroth, K. J. (2010). Definition of “Heavy Metals” and Their Role in Biological Systems. In Soil Heavy Metals, 19, 19-29. Arora, A., Saxena, S., Sharma, D. K. (2006). Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology & Biotechnology, 22, 97-100. Arora, A., Sood, A., Singh, P. K. (2004). Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology, 3, 302-304. Baykal, H., Baykal, T. (2008). “Küreselleşen Dünyada Çevre Sorunları”, Mustafa Kemal Ünv. Sosyal Bilimler Enstitüsü Dergisi, 5(9), 1-17. Boyd, R. S. (2004). Ecology of Metal Hyperaccumulation. The New Phytologist, 162(3), 563-567. Das, S., Goswami, S., Talukdar, A. D. (2014). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92(2), 169-174. Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. 111p. Springer-Nature. Doni, S., Macci, C., Peruzzi, E., Iannelli, R. Masciandaro, G. (2015). Heavy metal distribution in a sediment phytoremediation system at pilot scale. Ecological Engineering, 81, 146-157. Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807. Ergönül, M.B., Atasağun, S. 2017. Chapter 16 -The Effects of Chronic Low Level Zinc (Zn) Exposure on the Hematological Profile of Tench, Tinca tinca L., 1758. In: Trends in Fisheries and Aquatic Animal Health, Editor: Berilis, P. Bentham Science Publishing. Etim, E. E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3), 120-136. Fisher, S. W. (1995). Mechanism of Bioaccumulation in Aquatic Systems. In Reviews of Environmental Contamination and Toxicology (Vol. 142, pp. 87-117). New York: Springer. Forni, C., Chen, J., Tancioni, L., Caiola, M. (2001). Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Research, 35(6), 1592-1598. Fu, F., Wang, Q. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407-418. Galal, T. M., Farahat, E. A. (2015). The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environmental Monitoring and Assessment, 187(11), 701. Garnczarska, M, Ratajczak, L. (2000). Metabolic responses of Lemna minor to lead ions I. Growth, chlorophyll level and activity of fermentative enzymes. Acta Physiol Plant, 22(4),423–7. Gupta, P., Roy, S., Mahindrakar, A. B. (2012). Treatment of Water Using Water Hyacinth, Water Lettuce and Vetiver Grass - A Review. Resources and Environment, 2(5), 202-215 Hasasn, S. H., Talat, M., Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresource Technology, 98(4) 918-928. Hou, W., Chen, X., Song, G., Wang, Q., Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45, 62-69. Hurd, N. A., Sternberg, S. P. K. (2008). Bioremoval of aqueous lead using Lemna minor. International Journal of Phytoremediation, 10, 278-288. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. Järup, L. (2003). Hazards of metal contamination. British Medical Bulletin, 68, 167-182. Jayaweeraa, M. W., Kasturiarachchia, J. C., Kularatnea, R. K. A., Wijeyekoonb, S. L. J.2008. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J. Environ. Manage. 87 (3), 450–460. Johnson, D., Kershaw, L., MacKinnon, A., Pojar, J., (1995). Plants of the Western Boreal Forest and Aspen Parkland. Lone Pine, Vancouver, BC. Kara, Y., Basaran, D., Kara, I., Zeytunluoglu, A., Genc, H. (2003). Bioaccumulation of nickel by aquatic macrophyta Lemna minor (duckweed). Int. J. Agr. Biol., 5 (3), 281-283. Keskinan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 1-5. Keskinkan, O., Goksu, M. Z. L, Yuceer, A., Basibuyuk, M. (2007). Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci., 7, 192-196. Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., Forster, C. F.(2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol., 92(2),197-200. Khellaf, N., Zerdaoui, M. (2009). Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 100,6137–6140. Khosravi, M., Rakhshaee, R., Ganji, M. T. (2005). Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors. Journal of Hazardous Materials, 127(1-3),228-237. Kocataş, A. (2008). Çevre kirlenmesi, Çevre Biyolojisi. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, pp. 456-471,İzmir. Kulshreshtha, A., Ranu, A., Manika, B., Shilpi, S. (2014). A Review on Bioremediation of Heavy Metals in Contaminated Water. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 44-50. Lesage, E., Mundia C., Rousseau, D. PL., Van de Moortel UGent, A., Du Laing UGent, G., Tack UGent, F., De Pauw, N., Verloo, M. (2008). Removal of heavy metals from industrial effluents by the submerged aquatic plant Myriophyllum spicatum L. WASTEWATER TREATMENT, PLANT DYNAMICS AND MANAGEMENT IN CONSTRUCTED AND NATURAL WETLANDS. p.211-221 Lissy, P. N. M., Madhu, G. (2011). Removal of heavy metals from waste water using water hyacinth. ACEE International Journal On Transportation And Urban Development. (IJTUD), 1, 48-52. Lu, Q. He, Z. L. Graetz, D. A. Stoffella, P. J., Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17(1),84-96. Lu, Q., He, Z. L., Graetz, D. A. (2011). Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 18, 978-86 Maine, M. A., Sune, N., Hadad, H. (2006). Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering, 26, 341-347. Maltby, L., Arnold, D., Arts, G., Davies, J., Heimbach, F., Pickl, C., Poulsen, V. (2010). Aquatic macrophyte risk assessment for pesticides. SETAC Europe Workshop AMRAP, Wageningen, Netherlands, pp 135. SETAC Press & CRC Press, Taylor & Francis Group, Boca Raton, London, New York. Miretzky, P. Saralegui, A. Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals. Chemosphere, 57, 997–1005. Mishra, V. K. Tripathi, B. D. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99(15), 7091-7097. Mishra, V. K., Tripathi, B. D., Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172(2-3),749-54. Mokhtar, H., Morad, N., Fizri, F. F. A. (2011). Hyperaccumulation of copper by two species of aquatic plants. Intern. Conf. Environ. Sci. Eng. IPCBEE 8. IACSIT Press, Singapore. Moyo, P., Chapungu, L., and Mudzengi, B. (2013). Effectiveness of water Hyacinth (Eichhornia crassipes) in remediating polluted water: The case of Shagashe river in Masvingo, Zimbabwe. Advances in Applied Science Research, 4(4):55-62. Nahlik, A., Mitsch, W. J. (2006). Tropical Treatment Wetlands Dominated by Free-Floating Macrophytes for Water Quality Improvement in Costa Rica. Ecological Engineering, 28(3), 246-257. Noorjahan, C. M., Jamuna, S. (2015). Biodegradation of Sewage Waste Water Using Azolla microphylla and Its Reuse for Aquaculture of Fish Tilapia mossambica. Journal of Environmental Science, Toxicology and Food Technology, 9(3), 75-80. Özbolat, G., Tuli, A. (2016). Ağır Metal Toksisitesinin İnsan Sağlığına Etkileri. Arşiv Kaynak Tarama Dergisi. 25(4), 502-521. Raghav, N., Shrivastava, J. N. (2016). Toxic Pollution in River Water and Bacterial Remediation: An Overview. International Journal of Current Microbiology and Applied Sciences. 5(4), 244-266. Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytorem. 10, 430–439. Rai, U. N., Sinha, S., Tripathi, R. D., Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol. Eng., 5, 5-12. Razzaq, R. (2017). Phytoremediation: An Environmental Friendly Technique - A Review. Journal of Environmental Analytical Chemistry, 4(2), 195. Rezania, S., Din, M. F. M., Ponraj, M., Sairan, F. M., Binti Kamaruddin, S. F. (2013). Nutrient uptake and wastewater purification with water Hyacinth and its effect on plant growth in batch system. Journal of Environmental Treatment Techniques (JETT), 1, 81-85. Roberts, A. E., Boylen, C. W., Nierzwicki-Bauer, S. A. (2014). Effects of lead accumulation on the Azolla caroliniana-Anabaena association. Ecotoxicol Environ Saf. 10.1016/j.ecoenv.2014.01.019. Epub 2014 Feb 5 Sanchez-Galvan, G., Monroy, O., Gomez, J., Olguin, E. J. (2008). Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air, and Soil Pollution, 194, 77-90. Shafi, N., Pandit, A. K., Kamili, A. N., Mushtaq, B. (2015). Heavy Metal Accumulation by Azolla pinnata of Dal Lake Ecosystem. India. Journal of Environment Protection and Sustainable Development, 1(1), 8-12. Sharma, S., Singh, B., Manchanda, V. K. (2015). Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res Int., 22(2), 946-962. Sood, A., Uniyal, P. L., Prasanna, R., Ahuwalia, A. S. (2011). Phytoremediation Potential of Aquatic Macrophyte, Azolla. AMBIO, 41, 122–137 Stankovic, Z., Pajevic, S., Vuckovic, M. (2000). Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum, 43(4), 583-585. Tackholm, V. (1974). Student's flora of Egypt, 2nd edition, P: 888 Cairo University (publ.), co-operation printing company, Beirut. Tangahu, B. J., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, Article ID 939161, 31 pp. Taylan, Z. S. ve Böke Özkoç, H. (2007). Potansiyel ağır metal kirliliğinin belirlenmesinde akuatik organizmaların biokullanılabilirliliği. BAÜ FBE Dergisi, 9(2), 17-33. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. 101, 133-164. Tyagi, S., Garg, N., Paudel, R. (2014). Environmental Degradation: Causes and Consequences. European Researcher. 81(8-2), 1491-1498. Tripathi, A., Ranjan, M. R. (2015). Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. J Bioremed Biodeg, 6, 315 Tripathy, B. D., Upadhyay, A. R., (2003). Dairy effluent polishing by aquatic macrophytes. Water. Air. Soil. Pollut., 9, 377-385. US EPA. (Environmental Protection Agency), “Introduction To Phytoremediation”, EPA/600/r–99/107, Cincinati, Ohio, U.S.A, pp: 72, http://www.clu-in.org Üçüncü, E., Tunca, E., Fikirdeşici, Ş., Özkan, A. D., Altındağ, A. (2013). Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol. 91, 600-604. Ünlü, A., Tunç, M. S. (2007). Evsel Atıksu Deşarjı Öncesinde ve Sonrasında Kehli Deresi’nin Su Kalitesi Değişiminin İncelenmesi, İtüdergisi/E Su Kirlenmesi Kontrolü, 17(2), 65-75. Vasavi, A., Usha, R., Swamy, P. M. 2010. Phytoremediation – An overview review. Journal of Industrial Pollution Control. 26(1), 83-88. Vesely, T. Tlustos, P. ve Szakova, J. (2011). The Use of Water Lettuce (Pistia Stratiotes L.) for Rhizofiltration of a Highly Polluted Solution by Cadmium and Lead. International Journal of Phytoremediation, 13(9), 859-872. Wang, J., Feng, X., Anderson, C. W., Xing, Y., Shang, L. (2012). Remediation of mercury contaminated sites - A review. Journal of Hazardous Materials, 221-222:1-18. Wetzel, R. G. (2001). Limnoloji: Göl ve Nehir Ekosistemleri. 3. Basımdan Çeviri. Çeviri Editörü; M. B. Ergönül. 2017. 1006 p. Nobel Yayınevi. Yabanlı, M. (2014). Bioaccumulation of heavy metals in tissues of the gibel carp Carassius gibelio: Example of Marmara Lake, Turkey. Russian Journal of Biological Invasions.5(3),217-224. Yalçın, V. (2014). Yüksek Lisans Tezi. Bazı Ağır Metallerin (Pb, Cd, Ni) Sucul Bitkiler (Salvinia natans (L.), Lemna minor L.) Üzerinde Yaptığı Stres Ve Biyolojik Yanıtlar, Nevşehir Hacı Bektaş Veli Üniversitesi, Fen Bilimleri Enstitüsü, Nevşehir. Yavuz, O., Sarıgül, N. (2016). Toprak ve Sucul Ortamlardaki Ağır Metal Kirliliği ve Ağır Metal Dirençli Mikroorganizmalar. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7(1), 44-51. Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., McHenry, M. P. Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817-831.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji
Bölüm Derleme
Yazarlar

Danial Nassouhi

Mehmet Borga Ergönül

Şeyda Fikirdeşici Bu kişi benim

Pınar Karacakaya Bu kişi benim

Sibel Atasağun Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 14 Sayı: 2

Kaynak Göster

APA Nassouhi, D., Ergönül, M. B., Fikirdeşici, Ş., Karacakaya, P., vd. (2018). Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(2), 148-165. https://doi.org/10.22392/egirdir.371340
AMA Nassouhi D, Ergönül MB, Fikirdeşici Ş, Karacakaya P, Atasağun S. Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. SDU-JEFF. Haziran 2018;14(2):148-165. doi:10.22392/egirdir.371340
Chicago Nassouhi, Danial, Mehmet Borga Ergönül, Şeyda Fikirdeşici, Pınar Karacakaya, ve Sibel Atasağun. “Ağır Metal kirliliğinin Biyoremediasyonunda Sucul Makrofitlerin kullanımı”. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14, sy. 2 (Haziran 2018): 148-65. https://doi.org/10.22392/egirdir.371340.
EndNote Nassouhi D, Ergönül MB, Fikirdeşici Ş, Karacakaya P, Atasağun S (01 Haziran 2018) Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14 2 148–165.
IEEE D. Nassouhi, M. B. Ergönül, Ş. Fikirdeşici, P. Karacakaya, ve S. Atasağun, “Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı”, SDU-JEFF, c. 14, sy. 2, ss. 148–165, 2018, doi: 10.22392/egirdir.371340.
ISNAD Nassouhi, Danial vd. “Ağır Metal kirliliğinin Biyoremediasyonunda Sucul Makrofitlerin kullanımı”. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14/2 (Haziran 2018), 148-165. https://doi.org/10.22392/egirdir.371340.
JAMA Nassouhi D, Ergönül MB, Fikirdeşici Ş, Karacakaya P, Atasağun S. Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. SDU-JEFF. 2018;14:148–165.
MLA Nassouhi, Danial vd. “Ağır Metal kirliliğinin Biyoremediasyonunda Sucul Makrofitlerin kullanımı”. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, c. 14, sy. 2, 2018, ss. 148-65, doi:10.22392/egirdir.371340.
Vancouver Nassouhi D, Ergönül MB, Fikirdeşici Ş, Karacakaya P, Atasağun S. Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. SDU-JEFF. 2018;14(2):148-65.

Cited By

A Mini-Review On The Microplastic-Heavy Metal Interactions And The Factors Affecting Their Fate In Aquatic Habitats
Communications Faculty of Science University of Ankara Series C Biology Geological Engineering and Geophysical Engineering
https://doi.org/10.53447/communc.1423616